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A comprehensive shell-model approach to ,+hypernuclear spectroscopy in the p shell is 
developed. The available data on the spectra of iBe, A’ C, YC, YN and !,“O are interpreted in 
this framework, leading to constraints on the residual AN interaction and the one-body A- 
nucleus potential. The mechanism for the formation of A hypernuclei via the (K-, n-) 
reaction is treated in the relativistic distorted wave approximation, with careful attention paid 
to Fermi-averaging of the elementary K-n+ n-A amplitude and recoil corrections. 
Departures from the simple weak coupling picture, arising from configuration mixing, are 
emphasized. This leads to approximate dynamical symmetries in hypernuclei which are 
forbidden in ordinary nuclei by the Pauli principle. Further experiments in the p shell are 
suggested which may reveal other aspects of AN interactions. 

1. INTRODUCTION 

In the past few years, the possibilities for investigating hypernuclear structure have 
been augmented considerably by the development of magnetic spectrometer systems 
for the study of the strangeness-changing (K-, K) reaction on nuclear targets. The 
(K-, z-) process has been exploited at CERN [l-5] and Brookhaven [6,7] to 
determine the spectrum of ground and excited states for a number of light II hyper- 
nuclei. The new information on the energies and relative intensities of excited hyper- 
nuclear states as seen in the (K-, rr-) reaction represent a crucial supplement to the 
ground state binding energies already available for A < 16 from emulsion studies 181. 

The new hypernuclear data, particularly those for the p-shell systems ;Be, ‘2~~3C, 
f;‘N and YO, invite a complete treatment in the context of the shell model. The object 
of this paper is to develop such an approach, with careful attention to the dual 
problems of reaction mechanism and hypernuclear structure and their interplay. An 
outline of this program, together with results for A 13C, is contained in an earlier letter 
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[9]. In the present paper, we provide a more complete picture of the hypernuclear 
structure and (K-, X-) reaction calculations, as well as extending the results of 
Ref. [9] to encompass other p-shell systems. 

The development of this paper proceeds as follows: In Section 2, we discuss our 
treatment of the reaction mechanism. A distorted wave Born approximation (DWBA) 
is used, modified to allow for a relativistic description of KP and 7~~ propagation. 
This improves on the standard eikonal approach [ 10, 111, in that recoil corrections 
are properly treated. This is particularly important in obtaining the absolute cross 
sections for coherent n --t II transitions (for instance, ‘*C(O’) + yC(O ‘)). Elastic K - 
and TI- scattering data [ 121 are fitted to obtain optical potentials and distorted wave 
functions for the K- and X- ; the microscopic “tp” impulse approximation to the 
optical potential, which is commonly applied, does not yield an adequate lit to the 
elastic data, and results in different (K-, Z-) cross sections as well. The DWBA 
calculations are performed with the relativistic option of the program CHUCK [ 13 1, 
where the K- and 7~~ potentials are inserted into an energy-dependent Schrodinger 
equation derived from a Klein-Gordon equation. Combined with the relativistic 
treatment of the KP and nP distorted waves, we use experimental data and partial 
wave analyses for the reaction K-n--t 7c /i [ 141 to obtain a Fermi-averaged tran- 
sition amplitude in the nucleus. For coherent transitions pN +p,, , it is important to 
use the absolute square of a Fermi-averaged amplitude rather than the Fermi average 
of a cross section in order to obtain the correct absolute size of the (K-, 7~~) cross 
section to a particular final state. 

Combined with the distorted wave approach, one must employ a shell-model 
formalism sophisticated enough to describe comprehensively the hypernuclear 
structure aspects. This formalism is developed in Section 3. Care is required, for 
example, in disentangling the one-body /i-nucleus spin-orbit potential from the AN 
ressidual interaction, and in analyzing relative production cross sections which differ 
markedly from the weak-coupling limit. The structure calculation of Ref. [9] included 
(0~,)~(Op,)~(Op,,) and (Os,)4(Op,)E(Os,) configurations in ,!,“C; the former lead to the 
p;‘pA excitations which are predominant in the experimental spectrum of Ref. 171. A 
natural treatment of these is central to our approach. Our procedure is to first deline 
a basis of weak-coupling configurations 

(1.1) 

consisting of a A coupled to an exact core state YaJJ,,. A sufficient number of core 
states are included and the hypernuclear Hamiltonian 

H = HN + H,. + V,v, (1.2) 

is diagonalized in this truncated weak-coupling basis. For the purely nuclear 
Hamiltonian H, given by 

.4 - 1 
ff,= F- hi+ F‘ vij (1.3) 

,r, Zj 
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we consider two choices for the NN interaction Vii, one due to Cohen and Kurath 
[ 151 and the other to Millener [ 161. The remaining terms in Eq. (1.2) are the hyperon 
single-particle Hamiltonian H,, defined by a set of single-particle energies, and the 
hyperon-nucleon residual interaction IJv, given by 

The form of u(ri - rY) includes central components of spin-independent, spin-spin 
and space-exchange character, and may include as well spinorbit and tensor com- 
ponents. 

Section 4 is devoted to the choice of optical potentials U(r) and bound-state wave 
functions. The former are taken to have a standard Woods-Saxon form 

U(r) = -V(r) - W(r), 

V(r) = V, ( (+))-‘, 1 + exp 

W(r)= IV, (1 fexp c+,,-‘. 

(1.5) 

where R,,, = rFsw A “3 The parameters are adjusted to obtain a best fit to the elastic . 
K- + ‘*C and X- + “C data at 800 MeV/c [ 121. The same values of I’,, II’,. a,..,,. 
and rF*w, independently obtained for K- and x-, are adopted throughout the p-shell. 
For neutron bound-state wave functions, we also use a Woods-Saxon potential, 
adjusting its parameters to fit the neutron binding energy. The parameters were 
further constrained by fitting binding energies and rms radii for p-shell protons in “C 
and 13C, as obtained from elastic electron scattering and Coulomb energies. The A 
binding energies in p- states are not well known. Experimentally, the pllz and p3,* A 
orbits have essentially zero binding in YC ]6 1. For lighter systems, we have 
arbitrarily assumed a small binding of order 0.1 MeV for the p-state ,4. The geometry 
of the A well is taken to be the same as that for the neutron. 

In Section 5, we present the main body of our results for p-shell hypernuclear 
structure. We analyse the existing data on :Be, ;‘C, f;‘C, :jN and ,pO, and discuss 
the prospects for extracting additional information from the as yet unexplored 
systems ,‘,‘B, A’ B, YC and ,i’N. The emphasis of this work is on the extraction, from 
the hypernuclear spectrum, of details of the AN interaction not otherwise obtainable 
directly from experiment. We would also like to isolate those features of the spectra 
which result uniquely from the presence of the distinguishable A particle in the 
nucleus. The existence of hypernuclear states with a high degree of spatial symmetry, 
not allowed in ordinary nuclei, leads to approximate dynamical selection rules in the 
(K-, rt ) process. We also pinpoint hypernuclear y transitions due to “pure” A 
single-particle transitions, which lead to an accurate determination of A spin-orbit 
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splittings. Some of these may be observable experimentally via the (K-, 71-y) 
reaction [ 171. 

A brief summary of our conclusions is given in Section 6. 

2. THE (K-,n-)REACTION MECHANISM 

A proper relativistic calculation of the mechanism for the reaction .4Z(K-, n-) jZ 
is not easily accomplished even within a distorted-wave framework. We shall short- 
circuit this treatment to some extent by providing an ansatz for the many-body 
reaction amplitude in the rest frame of the target nucleus, i.e., in the laboratory 
system. This amplitude is assumed to be given additively in terms of the interaction 
of the K- meson with each nucleon in the target. Hence one requires in principle a 
knowledge of the amplitude for the elementary K-n + n-,4 process in a variety of 
off-shell situations. Rather than treating this off-shell behavior we employ an 
amplitude possessing explicit Lorentz invariance and energy-averaged over the bound 
nucleon energies. We extrapolate from the elementary amplitude to the many-body 
amplitude with an explicit model form for the K-n + 71-/1 interaction. 

2.1. Construction of the (K -, n- ) Distorted- Wave Amplitude 

The cross section for hypernuclear production in the (K ~, ?I- ) reaction depicted in 
Fig. la may be written in the laboratory frame as [ 18 ] 

da WU nE -- 
dQ,> -’ (2~rh’c~)~ (EtotaJ2 m 

(2.1) 

with ZZE defined as the product of the energies of the K-, C. target (A) and residual 
hypernucleus (H) in the barycentric system, and k,, k, are the many-body 
barycentric momenta. The total c.m. energy is Etota, = E, + E,, = E, + E,,, , and J is 
the barycentric to lab Jacobian. The bar denotes the appropriate average and 
summation over spins. The transition amplitude Tyf is defined here in the many-body 
barycentric system, including distortion, as 

X x”‘(k,, rKA) d3r,,d3 r.Acd3rK.4 d3rnc 

with coordinates as given in Fig. lb. Here Qp,(x)[@i(y)] is the second-quantized field 
operator destroying (creating) a neutron (4) at the spatial point x(y): 

@Ax) = \’ ~.i,m,(~) akin, m,), .- .fwm” 
(2.3a) 
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FIG. 1. Notation for the discussion of the (Km, R- ) reaction on a nuclear target A, leading to a 
hypernucleus H. In the initial and final channels Km + A and A + H. respectively, the vector relation 
between the two-body and many-body relative coordinates is shown; C is the nuclear core consisting of 
the A - I spectator nucleons. 

@i(Y)= \‘ Ci*,m,(Y)4(~.,.~.,). 
i,.m, 

(2.3b) 

The effective meson-baryon interaction 11 for the transition Km tz + 71 /i is assumed 

local and spin-independent, 

(rvr’r,, It)/ rR. rn) = WT., - L) 4r,,, - r,,,,) W,,,,), (2.4a) 

where R,, denotes the center of mass coordinate constructed from ra and rb. 
Introducing a multipole expansion for a;~,, and isospin notation, Eq. (2.2) reduces 
to the form’: 

’ Here and throughout this paper we follow the angular momentum conventions set in Ref. 1 I9 1: note. 
in particular, the definition of reduced matrix elements. 
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with the distorted-wave reduced amplitude /?i given by 

P”,(j,,j,)= (-l)k+m . I X’-“(k,, r,,)@j,,(r,,) U~,i,~(rnc))krnX(‘)(kli, rtiA) (2 6) 

x d3rnHd3r,,cd3rKAd3r,c. 

The time-reversed quantities denoted by tilde are defined through 

&.(j,, m,) = (-l)j*+m* a(&, -m,v), 

J.i.,.m., = (-l)j~~-m,~#J,P,,. 

The reduced (in spin and isospin) matrix elements 

(fll G?XP II 9 

(2.7a) 

(2.7b) 

(2.8) 

constitute the one-baryon density matrix appropriate to (K-, 7~~) in terms of the 
neutron pickup amplitudes from the AZ target, obtained in the structure calculation 
described below. Averaging the squared amplitude (2.5) over initial, and summing 
over final? nuclear spin orientations: 

pg%L- -K- 1 zy = (TiTi l/2 l/21 T,r&’ 
vJf+ 1) 

zIi + ’ ,WT;;’ twi + ‘) 
(2.9) 

A considerable simplification occurs in the amplitude /I”, under the assumption that 
the meson-baryon interaction (2.4a) is of zero range: 

Vrx,) = w(rKn). (2.4b) 

The 6 functions that enforce r,,, = rRn = 0 in (2.4) give rise to two corollaries: (i) 
causing 6(R,, - RKn) to become equivalent to 

4rAc - rnc) (2.10a) 

and, through the relationships noted in the caption to Fig. 1, (ii) 6(r,, - rKn) 6(r,,) 
may be replaced by 

(2. lob) 
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With the constraints given by (2.10), expression (2.6) simplifies: 

(2.11) 

The factor (M,/Mc)3 must be externally factored into the CHUCK calculations. 
Since we have ignored spin flip in the K-n --) 7c-A process, we can decouple spin 

in (2.11) in order to identify the angular momentum transfer AJ as AJ = AL = k: 

(2.12) 

The factor (!,01,O]ko) exhibits the natural parity selection rule I,, + I,, + li = even. 

2.2. Comparison to Eikonaf Calculations 

We note particularly in Eq. (2.11) the coordinates r and M,q r/M,, which appear in 
the outgoing and incoming distorted waves, respectively. In the context of the three- 
body model of Fig. 1, these coordinates take proper account of recoil corrections and 
include effects of the A-neutron mass difference. The fact that Ji,(r) and $,i,(r) are 
evaluated at the same spatial coordinate is a consequence of the zero-range approx- 
imation we have used for the K-n + X-A amplitude. In Ref. 1201, the (K-, zp) cross 
sections for a “C target were evaluated using a momentum-space code which incor- 
porates finite range effects by using the full partial-wave structure of the K-n -+ n -A 
process, rather than an effective s-wave approximation as employed here. By 
comparing the results of coordinate space distorted-wave runs with the earlier 
calculations [ 20 J, we conclude that the finite range of the elementary amplitude has 
little influence on small-angle cross sections for hypernuclear formation. Note, 
however, that in the standard eikonal distorted wave approach ] 10, I1 1, one neglects 
recoil corrections, i.e., M.4/MH and MA/MC are set equal to unity in Eq. (2.11). Since 
MA/M, =A/@ - 1) z 1 + l/A, this would appear to be a harmless neglect of a 
“l/A” correction. We have checked the validity of this procedure for a variety of 
(K-, r-) transitions to discrete final states. For transitions with orbital angular 
momentum transfer k = AL # 0 to states in YC, we have generally found good 
agreement (on the level of IO-20% or so) between the no-recoil eikonal approx- 
imation and the full distorted-wave calculation. However, for O+ + Of transitions 
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with k = 0, we have found large discrepancies (as much as a factor of 2) between the 
standard eikonal and distorted-wave (CHUCK) results, even at 0’. Thus, for these 
transitions, which are the most important for small-angle (K -, n-) reactions, it is 
important to take account of recoil effects, which are much larger than the naive 
estimate of l/A. 

As a parallel test, the eikonal program of Ludeking ]21], which was used to 
estimate hypernuclear formation cross sections in the (X ‘, Kt ) reaction, was 
modified to include recoil effects in the approximation M, =: Mq . Note, however, that 
the correct value of MH is used to calculate k,. Expression (2.11) can then be written 
as 

Pi(j,, ,jN) = vf 1 d3rx’-“(k,, r)(k) “‘“(P,,(r) v,i,v(r))“mx’f’(kKh.’ r), (2.13a) 
3/z 

@j(P)3 p = Ar/(A - 1). (2.13b) 

Provided the normalized wave functions #j(p) solve the Schrodinger equation with 
Woods-Saxon potentials of well depth V, and geometrical parameters r,,, a to yield 
binding energy E,, the wave functions i,uj are also normalized, J’] vj]‘d3r = 1, and can 
be obtained by solving the Schrodinger equation with scaled parameters 

{r,,al-+ (A - l)/A{r,, a), 1 v,,, EBl-+ IA/CA - l)l’i v,, ERJ. 

For k # 0, the eikonal and DWBA results for a test case “O(Km-. 7ct )yC at 720 
MeV/c were identical within a few percent for 0,, z 0”. For p + p, k = 0 transitions 
leading to Ot final states in YC, there was still a discrepancy in cross section of 
about 30%. The discrepancy relevant to /i hypernuclear production in (K-, n-) is 
estimated to be smaller for k = 0 due to the smaller momentum transfer here and the 
smaller mass difference M, - Mq, This indicates that the eikonal approximation 
itself is rather good at 700-800 MeV/c, if one takes account of recoil effects. The 
modified eikonal program [ 2 1 ] was useful in any case for providing an independent 
check of the normalizations, angular momentum and isospin phases, and the 
integration procedures of the DWBA calculation. 

In the plane-wave limit the curly bracket of (2.12) simplifies (M,, = M,) to 

{ ) + vy \ dfldr eiq” ” I’:(F) uj,,,,,(r) U,j,v,,v(r) 

= vf 4rjkYK(8) lam dr ujA,A(r)jdq’r) uj,,,,(rh 
(2.14) 

where q’ = @4,/M,) q and q = k, - k, is the c.m. momentum transfer. For small 
values of q, the factor j,(q’r) - (q’r)k produces a characteristic peaking which for 
k # 0 occurs at a nonzero angle which increases with k. This feature remains evident 
in the distorted-wave amplitudes and can be seen in the angular distributions plotted 
in Section 5. 
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2.3. Computational Procedure and Choice of V, 

In practice [22], the partial-wave expansion 

p(k,,r)+ r iLiuli(kK, r) YQk ,̂) Yii(?), 
K ;;;;;, 

,yp’*(k,, r) = & z, i-‘fu,,(k,, r) Y$(k^,) Y&(F) 
II 

(2.15) 

is introduced into expression (2.12) for ,f?k which then involves the evaluation of one- 
dimensional integrals containing the radial wave functions uj,,,,, and u,~,~,, for the 
baryons and the partial waves uli and u,,for the mesons. These partial waves U/(T) are 
calculated using a Klein-Gordon (KG) equation, which in CHUCK [ 131 and the 
program A-THREE [ 231 used for the elastic fits, is reduced to an energy-dependent 
Schrodinger equation of the form 

V’+$[(E’/c’-m2c2)-2E(U+ V,)/c’] x=0. 
i 

(2.16) 

From the imaginary part of the optical potential one can compute a mean free path 
A, for the K- and Z- inside nuclei. Anticipating depths of W, z 5OMeV from 
Section 4, one finds that 1, is of the order of the nuclear radius for thep-shell nuclei. 
Thus the potentials are not very strongly absorbing at these rather high projectile 
energies, 

Finally, we discuss the choice of the volume integral V,” (2.4b) in the barycentric 
frame. A straightforward application of the zero-range assumption (2.10) without 
recourse to the previous expansions, yields for T:, Eq. (2.2), the following expression 
(MH z MA assumed): 

T;= V; 
J 
‘X’-‘*(kT, r)p$-l*AQ=o (r)n”+)(kK, r)&r. (2.17a) 

Here, the strangeness-changing charge-conserving transition density 

&S=l.AQ=O (2.17b) 

where the scaled and dilated single-particle wave functions are defined by (2.13b), 
may also be written in the more familiar form 

&S= - I,AQ=O u-(j) 6(r - ri) !Pi((rj, o,~, ~,~})Ild’r~ 

(2.17c) 

with u-(j) the lowering component of u spin required to transform a neutron j to a n 
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in the same space-spin state. The coordinate rj is relative to the nuclear center of 
mass, so that (2.17b, c) provide the required generalization of static charge densities 
(elastic as well as inelastic) as measured by electron scattering. The form (2.17a) is 
reminiscent of the “@” approximation for inelastic processes at medium energies, 
where t is the two-body transition amplitude. However, the most natural frame to 
impose this approximation is the laboratory frame, in which the prescription 
TL = tL(OO)p. embodying in addition a zero-range assumption for the two-body 
effective interaction, gives rise to 

Since, by Lorentz invariance ] 18 ], 

&EKE,., EJ,), T’ = \/(E,E.$,E,) TR, 

expressions (2.17a) and (2.1 S), upon comparison, yield the identification 

(2.19) 

v, = lt”(O”)l. (2.20a) 

An explicit expression for the volume integral V, is given by 

v, = 2rc(AC)* pK- /I --!k) “‘“dn:~;o;-“‘]“2, (2.20b) 
PC&K ‘, 

where the small case quantities refer to the two-body lab system. Expressions (2.1), 
(2.17a) and (2.20a) for the (K-,X-) laboratory cross section are equivalent to 
Eqs. (2) of our letter 191. 

The assumption of zero meson-baryon interaction range is here equivalent to 
t =: t(0”) which is justified even for the largest angles observed in present (K-, 71~ ) 
experiments where the momentum transfer is less than 300 MeV/c, much smaller than 
the momentum l/dr z 500-1000 MeV/c associated with the range Ar of the 
K -12 -+ rt PA interaction. 

2.4. Fermi Averaging 

Another point in selecting the appropriate strength for the K-n + n-,4 amplitude 
in the nuclear medium is the strong energy dependence of the free-space amplitude in 
the momentum region around 800 MeV/c where most data exist. In view of this, it is 
important to average the amplitude over the distribution of neutron momenta in the 
nucleus. We now define our procedure for this Fermi averaging. 

Several groups [24,25] have presented multichannel analyses of the EN+ &V, ~4 
and TX amplitudes. For computing the appropriate Fermi-averaged amplitudes for the 
K-n -+ X-A reaction on nuclear targets, we have adopted the amplitudes due to 
Gopal et al. [24], which are available in the total center of mass energy range 
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1480-2170MeV. Although the free-space amplitudes of Martin and Pidcock 125 ] 
exhibit some significant differences from those of Gopal et al. [24] for certain partial 
waves, the Fermi-averaged results are very similar, since one sums over partial waves 
and smooths out rapid energy dependences by the averaging procedure. 

In the two-body barycentric system, one has the usual partial-wave decomposition 
of the non-spin-flip and spin-flip amplitudesf, and g, 

f,(e) = $\‘ [ (I+ 1) T,, + IT, ] P,(cos 8), 
I 

(2.21) 

g,(8) = ; 1 [T,, - T[m] P;(cos 0) 
I 

such that 

da 
t-1 

K-n+X-A 

dQ B 
= If,va’ + I g,(e)l’. (2.22) 

Here K is the K-n barycentric momentum, and the dimensionless amplitudes T,, 
refer to the total spin j = 1 f f, respectively. 

For r3= O”, the relation between barycentric and lab cross sections assumes the 
simple form 

(2.23) 

where k,, and k, = K’ are the momentum of the pion in the final-state two-body lab 
and barycentric systems, respectively. 

Our Fermi-averaging procedure is done in the lab system, for B = 0”. Equivalently, 
if one writes the amplitude as a function of the relativistic variables s and t, we are 
essentially keeping t fixed and averaging over s. No off-shell corrections are included, 
such as binding energy, Pauli principle and dispersive effects of the nuclear medium. 
In our calculation, the only effect of the nucleus is to generate a distribution p(k) of 
the lab momentum k of the struck neutron in the K-n + n-/1 reaction. If we define 
the z axis as the direction of the incident lab momentum pK of the K-, our Fermi 
average consists in integrating over the magnitude of k and also x = cos 0,,,,. We 
define two types of averages 

(-&) = !“= dkk2p(k) i’+’ dx ($1 (p,, k, x), 
L OO,AV 0 . -1 I. 00 

(2.24) 

(LL(O))Av = jb”l dk k*/W f+’ dxf,(O), 

where p(k) is normalized so that 2 J‘r dk k*p(k) = 1. The incoherent average 

(d~P,.)o~,.v is appropriate for sum-rule estimates of the total (K-, n-) cross 
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section on a nucleus, summed over final hypernuclear states (including the 
continuum). For coherent transitions (for instance, pN -P,~) of interest in this paper, 
it is more correct to first average the forward amplitude, obtaining (f,.(O)),, , and 
then square to obtain a cross section, rather than directly averaging the cross section. 
The difference between (du/dQ,),,,,, and / (J1(0))Av(2 is quite significant in the 
region of interest around 800 MeV/c, as we see later. In (f,,(O)),,, p(k) should 
represent only the momentum distribution for the particular single-particle orbit we 
are considering (p, here). In the p shell, only a small error is introduced, however, if 
we instead use the momentum distribution of the entire nucleus for p(k). 

In detail, the calculation proceeds as follows. We first perform the sum in 
Eq. (2.21) at each energy to obtain f,(O), using the T,, from Gopal et al. (s,p, d, f 
and g waves are included 
using free space two-body’ 

We then obtain the lab amplitudesf,,(O) = (k,,./k,)f,(O). 

% inematics to compute k,,. and k,. Using the values of 
f,,(O) at successive overlapping sets of three values of barycentric energy F,~,,~,, we 
construct a quadratic interpolation formula for f,(O) in each region of energy. In 
numerically performing the integrations in Eq. (2.24). we first construct stota, for each 
choice of ph., k and x via the formula 

E t”ta, = (m;. + Ky + (m,;. + K2)“*. (2.25) 

K2 = (p; k’x’ - 2EpA ckpIi kx + p; M’,. + c;, k’)/(M:, + M: + 2EPk El, - 2p, kx), 

where &pK = (M; + pi)“‘, Ed = (M,: + k2)“2, M, and M, being the kaon and nucleon 
masses, respectively. We then use the interpolation formula to calculate the 
corresponding value of (du/dLl,),, or j”(O). Thirty grid points in x and a 5 MeV/c 
grid in k were sufficient for an accurate numerical evaluation. 

Results are shown in Figs. 2 to 4. The angular distributions for the free space 
K-n -+ n-n reaction at several momenta are shown in Fig. 2. Note that the cross 
sections do not drop drastically in the angular region between 0 and 1Y. Thus the 
approximation of replacing the full partial wave content of the K-n + n-/i process 
by a Fermi-averaged total amplitude at 0” is quite reasonable for small angle 
(K-, n-) reactions on nuclei. Recall that in our calculation of hypernuclear 
formation cross sections, we use a zero-range transition operator proportional to 
(f,(O)),, Cien u-(i) 6(r - ri), i.e., an effective s-wave (isotropic) amplitude. The 
spin-flip cross section ( g(* is also seen to be very small at 800 MeV/c. 

We have performed Fermi-averaging with several different assumptions for p(k). 
One form used is 

p(k) = po( 1 + exp(k - k,)/Ak)- ’ (2.26) 

with k, = 100 MeV/c and Ak = 50MeV/c. This diffuse Fermibgas model was first 
obtained by Miller 1261 and later used by Allardyce et al. 1271 for the Fermi- 
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I- 

SPIN FLIP (801 M&/c) 

FIG. 2. Differential cross sections for the K-n + K-A reaction in the lab system at several incident 
momenta. taken from the analysis of Gopal et al. [ 14 1. The spin flip cross section is shown separately at 
801 MeV/c. 

averaging of pion-nucleon amplitudes. For ‘*C, we have also used a harmonic 
oscillator model 

p(k) = po(N, + 2/3 N,(kb)*) e -(kb)2 (2.27) 

with oscillator length parameter b = 1.64fm. Here N, and ND are the number of s- 
and p-shell neutrons. In Fig. 3, we show results obtained using Eq. (2.26) and also the 
oscillator model with both L,= 0 and 1 (N, = 2, ND = 4) and with L, = 1 only 
(N, = 0), the latter being more appropriate to the coherent p,,, + P,, transitions. The 
differences are seen to be only a few percent. This may be expected, since the rms 
momentum (k * “* for the various p(k) models is very similar: we have (k2)r’z = 177 > 
and 201 MeV/c for the L, = 0, 1 oscillator and Fermi forms, respectively. 

In Fig. 4, we display our results for the coherent and incoherent Fermi-averaged 
K-n -+ 7c-A cross sections, as a function of KP lab momentum, using p(k) from 
Eq. (2.26). The rapid energy dependence in the free cross section, due to a number of 
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LAB MOMENTUM iMeV/cl 

FIG. 3. The absolute square of the Fermi-averaged K-n + ,7 A lab amplitudeJ, (0) as a function of 
momentum. Several prescriptions for the density p(k) used in the Fermi average are compared. The solid 
curve uses the Woods-Saxon p(k) of Eq. (2.26). while the dashed curves use the harmonic oscillator 
density of Eq. (2.27) including both s- and p-wave nucleons (I!., = 0. I ) or only p-shell nucleons (curve 
labeled “L,V = 1 ONLY”). 

I  

400 500 600 700 800 900 1000 
LAB MOMENTUM (M&‘/cl 

FIG. 4. Fermi-averaged forward K-n + n-A lab cross sections as a function of K lab momentum. 

The free space lab cross section of Gopal et al. 114 1 is displayed as a dashed line. The coherent and 
incoherent Fermi averages / (J,,(O))i’ and (do/&, ),-.,,, of Eq. (2.24) are shown as solid lines. 
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Y,* resonances, is considerably smoothed out by the averaging procedure. The 
coherent average 1 (f,(O)),, 1 * is consistently smaller than the averaged cross section 

w~%bw~ although the differences are minor below 700 MeV/c or so. At 
800 MeV/c, the momentum appropriate to the ,yC experiment, 1 (f,(O)),., 1.1 * is 
considerably reduced with respect to the free cross section, by almost a factor of 2. 
We see that it is also important to include Fermi averaging in sum-rule estimates of 
(K-. z-) cross sections on nuclei. Using 1 (f,(O)),,,l’ = 3.2mb at 800 MeV/c from 
Fig. 4, we obtain from Eq. (2.20b) the value I’, z 165 MeV fm3, the volume integral 
of the K-t1 + ~-ii interaction appropriate for use in CHUCK. At 720 and 
530 MeV/c I’, takes the values 18 1 and 210 MeV fm”, respectively. 

3. FORMALISM FOR STRUCTURE CALCULATIONS 

We consider hypernuclear states produced in the (K-, n-) reaction on p-shell 
target nuclei. The states of lowest excitation energy in the residual hypernucleus are 
produced when a p-shell neutron is converted into a A in the lowest s shell (s,,). In 
line with nuclear structure terminology we call these states, in which s,, is coupled to 
a nuclear p-shell core, Oztw states. Extensive Ohw shell-model calculations have been 
made by Gal, Soper and Dalitz j 281 and, where necessary, we use their results for 
such hypernuclear configurations. 

For the K- beam energies used at BNL and CERN p,v+p,, transitions are very 
strong; these include the substitutional transitions, strongest at O”, which leave the 
many-body wave function essentially unchanged (except that a ,I replaces a neutron). 
Most of the states of the lfio configuration s4p”p,, (n + 5 = A) have not yet been 
resolved or identified because of the relatively crude resolution (of order 2MeV) and 
the restriction to small angles. In this paper we perform calculations for such 
configurations and use the wave functions to provide the spectroscopic input for 
calculations of the (K-, X-) reaction cross sections in order to identify and assign 
quantum numbers to observed hypernuclear states. 

We should also consider lhw configurations of the form s’p”’ ‘s,, since they can 
also be formed in the (K -. X- ) reaction. Because of the high energy and large width 
of the nuclear s-hole state the resulting hypernuclear states are also expected to be 
broad and will occur above the states which mainly interest us. It should be realized, 
however. that the lowest lhw hypernuclear states lie below the s4p”p,, configurations 
of particular interest for the (Km, n-) reaction. This is because some lhw levels of 
the nuclear core, to which an s,, can couple. always occur at excitation energies lower 
than the separation between the s,, and pn orbits (about 11 MeV). The main effect of 
these lho core @ s,,, configurations, mostly of the form s4p”- ‘(sd) s,, , will be to 
produce some fragmentation of the Ohw core @p, strength. Yet any fragmentation of 
this sort would not be noticeable with the current experimental resolution in (K -. c ) 
experiments. 

Another reason for including lku configurations of the type lho core @ s;,in the 
IAo hypernuclear shell-model space is to ensure proper elimination of spurious center 
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of mass states. If we treat the hyperon as a distinguishable nucleon in a harmonic 
oscillator basis then all s4p”pA configurations have an overlap of A -I’* with spurious 
states. Since this overlap is small and uniform we are satisfied, at the present level of 
sophistication, to work with a basis s4p”pA configurations only. Calculations for 
sN-+ s,, transitions, on the other hand, require a more careful treatment of the center 
of mass problem, a treatment which is quite feasible with current shell-model 
techniques. 

3.1. The Shell-Model Calculation 

The hypernuclear Hamiltonian can be written in the form 

H= H,v + H,. + V,ry. (3.1) 

where HN is the Hamiltonian for the nuclear core, Hy is the single-particle 
Hamiltonian for the hyperon and I’,,,, represents the residual interaction of the 
hyperon with the nucleons. We write the shell-model basis states in a weak-coupling 
representation 

{la,J,T,.Oj,.Y;JT)}, (3.2) 

where a,J,T, label individual core wavefunctions. which in our case are obtained 
using the Cohen and Kurath (8-16)POT interaction [ 15 1 for H,., and j,. Y label the 
total angular momentum and isospin of the hyperon; J, andjF are coupled to J and 
similarly for the isospins. 

We can always write the two-particle NY interaction in terms of creation and 
annihilation operators 

where 

j= (2j + l)“? and cim,,,,,= (-)itmtrtm~aj m, ,,l. i 

On recoupling the operators we have 

where a = {j,vj~jyj;.kt), 

and 

E?Ffj,v 1/2j,. Y 1 I’/ jk 1/2j;.Y’)h’ 

(3.3 1 

(3.4) 

(3.5) 

(3.6) 
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The unitary 9 - .I symbols effect the recoupling transformation and can be written in 
terms of 6J symbols. For the case of interest here Y = /i(t = 0) and 

The many-particle matrix elements in a weak-coupling basis can now be written 

(a,J, T, IIP,fJj( I/ a’JL T,). (3.8) 

where we use Brink and Satchler‘s [ 191 definition of a reduced matrix element which 
gives 

CL Il~j”,4i,,~IlA) = 4L. (3.9) 

The one-body density matrix elements for the nuclear core are calculated for a 
given nuclear interaction and stored. For any set of AN two-body matrix elements the 
matrix of the hypernuclear Hamiltonian can be very rapidly constructed using (3.8). 

3.2. Spectroscopic Amplitudes for Hypernucleus Formation 

For any inelastic scattering process the structure information is contained in the 
one-body transition density 

(aplfTfII~~~~~~,,l,zIl a,JiTi) (3.10) 

with the initial nuclear wave function on the right and the final hypernuclear wave 
function on the left. Recalling the cross section for the (Km, K) reaction (2. l), 
(2.17a) and (2.20a) 2nd denoting Tt = Vf F, (this Fif was used in our letter 19 1) it 
can be shown that 1 Tir12 signifies the effective neutron number [ 10 ] 

(3.1 la) 

where the functions Mz,d,v’k(E, 0) are proportional to p”,(j,,j,V) of (2.11). 

Pk(j,,j,)= Vf’@,,(j, IICkll jN)Mp’k, 

and result from the DWBA integration. 

(3.1 lb) 
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If the single-particle radial wave functions depend only on l,v or I, (e.g., we choose 
the same binding energy for both j values) the summation over j,j, in (3.1 la) can be 
performed to give 

with 

(kfhs)h’fz /I aiJiTi)‘} (3.12) 

Nk(E, 8) = \‘ pfyqE, 0)12, 
m 

(3.13a) 

where the density matrix element has been transformed from jj to LS coupling and 
k, = k, k, = 0. For ps -+p,, transitions the independent amplitudes N”, N’ peak in 
different angular regions, No falling away rapidly from 0,. = 0” and N’ peaking near 
19~ = 15” for the present nuclei and kinematics (see Fig. 7); in fact, in the PW approx- 
imation, 

(3.13b) 

Equation (3.12) shows that the ratios of cross sections to different final states may be 
obtained, to a good approximation, by simply squaring the ratio of density matrix 
elements. 

The density matrix elements are readily computed from the nuclear and hyper- 
nuclear wave functions. However, it is worthwhile to examine the case where the 
!lypernuclear wave function is simply a weak-coupling state. The transition density 
(3.10) then becomes 

(p”-’ a,.J,~~@j,,O;J,T, 11 (u;, @ qh’q p”u,J;T;) 
(3.14) 

= jr&(-)J’+J’+k (p”~‘acJcTr//di,IIpnaiJiT;), 

where the reduced matrix element of the annihilation operator is the product of a 
factor 

and the spectroscopic amplitude for single-nucleon pickup from the target. Thus in 
the limit of pure weak-coupling the (K-. n-) cross section would simply map out the 
pickup strength. This is seen more clearly if we sum over Jfjn assuming again that 
the DWBA integral depends only on I)s, not on/s; expression (3.1 la) then assumes 
the form 
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; (2k + l)(z,OkOIz, 0) - L * “ C’Sj(C)] Nk(E, e), (3.15) 

where Sj is the pickup spectroscopic factor and C = (T,r,l/2 - l/2 1 Tiri). For *jC, 
C2 = (2T,+ 1))’ and expression (3.15) becomes 

1 
K’ SjNk(E, 8) 

2Tf+ 1 -y 
(fort,,=O,k=l andI,,=l,k=O). (3.15a) 

2 
Y- SjN2(E, 8) 

2Tf+ 1 J 
(for I,, = 1, k = 2). (3.15b) 

A poor resolution (K-, X-) experiment would see just this strength. Regardless of 
the strength of the coupling or the experimental resolution, (3.15) provides a very 
useful sum rule. Furthermore summation on J, yields n,Nk(E, 0) for (3.15a) and 
2n,Nk(E, 0) for (3.15), where np is the number of p-shell neutrons in the target. 

3.3. Choice of Shell-Model Basis 

In most of our calculations in a p”p,, basis we have used the Cohen and Kurath 
(8-16)POT interaction [ 151 to generate the wave functions of the nuclear core states. 
The properties of p-shell levels are generally well described by this interaction. In 
particular there is no serious disagreement between theory and experiment for 
spectroscopic factors deduced from single-nucleon pickup and stripping experiments. 

In selecting the number of nuclear core states to be used in the construction of the 
basis for hypernuclear shell-model calculations we have observed two criteria which 
are to some extent linked: 

(a) The core states chosen should to a high degree exhaust the single-nucleon 
pickup strength from the target. 

(b) The core states chosen should account for most of the intensity of 
configurations with high spatial symmetry. 

These requirements ensure that all configurations which can be reached from the 
target ground state via a one-body operator are included together with configurations 
of the same supermultiplet symmetry which may admix strongly. To satisfy 
conditions (a) and (b) for 13C requires at most four core states with the same spin 
and isospin. It is possible to state the second requirement in the form given, since 
supermultiplet symmetry (equivalently SU3 symmetry) is a good symmetry in the p 
shell; of the p-shell ground states 13C is the least pure in terms of supermultiplet 
symmetry with about 70% [441] symmetry. We shall often find it useful to exhibit 
the spatial symmetry structure of hypernuclear wave functions. For example, in the 
substitutional reaction in which a LI particle replaces a neutron with no angular 
momentum transfer only configurations identical to the target configuration can be 
reached. Since the target wave function has predominantly one spatial symmetry, in 
fact a simple LS structure, it is informative to study the hypernuclear wave functions 

595/148/2-IO 
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in this basis also. However, performing the structure calculation in the weak-coupling 
basis does have the advantage that we can, and do, use the experimental binding 
energies for the core states. When we cannot make an identification of a calculated 
core state with an experimental one (this occurs at high excitation energies) we use 
the theoretical energy in constructing the hypernuclear Hamiltonian matrix. Small 
shifts in the energies of these core levels have negligible effects on our predictions for 
excitation strength in the (K-, X-) reaction. 

3.4. Parameterization of the Two-Body Interaction 

We use a central interaction of the form 

v,,, = -V(r)( 1 - E + EP,)( 1 + ao, * o,,), (3.16) 

where P, is the space exchange operator. For baryons in p orbits the interaction is 
characterized by two radial integrals commonly denoted by F”’ and F”‘. The two- 
body matrix elements in LS coupling are the product of a spin factor 1 + a(4S - 3) 
and an orbital factor given by 

L =o, F”’ + 2/5F"', 

L = 1, (1 - 2&)(F”’ - l/5 F”‘), (3.17) 

L = 2, F”’ + l/25 F'*'. 

Unless E is large, F”’ affects mainly the overall binding energy. Dalitz and Gal 1291, 
in their studies of ;Be have used F”’ = -1.16 MeV and F”’ = -3.69 MeV. Bouyssy 
[30] has obtained a z -0.15 in fits to CERN data on PO, a value similar to that 
used by Dalitz and Gal. A value E z 0.25 is consistent with A-p elastic scattering 
data [ 3 1 ] and has been used by Bouyssy. In summary, the NLI interaction seems to 
be relatively weak (for the p-shell interaction in ordinary nuclei F”’ z -10 MeV) 
without any strong exchange dependence. 

In addition to the one-body spin-orbit splitting of the p-shell A orbits, cg,, - E,,, ?, 
which we denote by sp, we also consider symmetric and antisymmetric two-body 
spin-orbit interactions 

0 + (r)h * SJ - INA. (3.18) 

It is sometimes more convenient to write 

Q9 sA + l,, y uAz(r) = u+(r) + u-(r), 

UN(r) s, . INA, UN(r) = u+(r) - u-(r). 

Then the interaction of p,, with the closed nuclear s shell gives 

(3.19) 

(3.20) Ep = - 3Z,(u,), 
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where I,(v,,) is the diagonal radial integral of v,,(r) for an NA relative p state: 

I,(v,) = l,u u;(r) v,,(r) dr. 

Calculations of one-body spin-orbit splittings by Dover and Gal [32], which use 
the baryon-baryon potentials of deSwart et al. [33], predict that the /i-nucleus 
spin-orbit interaction is much weaker than, and of the same sign as, the N-nucleus 
spin-orbit interaction. This conclusion is consistent with those of other analyses 1341 
and with analyses of hypernuclear data [2, 351. 

Within the p shell the v* term behaves in part like a one-body interaction. The 
interaction of p,, with the closed p shell gives a contribution to ep equal to 

-3/2 md + 5~44, (3.22) 

where I,(v,) is the radial integral for relative d states. However, v,, , as does vh., also 
gives rise to other terms including off-diagonal matrix elements in the weak-coupling 
basis of the shell model. 

Interactions based on meson exchange models [ 321 indicate that u, (r) should be 
attractive and u-(r) repulsive resulting in a weak but attractive u*(r) potential. In 
this case u,,,(r) would be attractive and quite strong. The empirical matrix elements 
obtained by Gal, Soper, and Dalitz [28] in their lit to hypernuclear ground-state 
binding energies are not consistent with these expectations. Also we know that in 
determinations of effective interactions in the nuclear p shell there is considerable 
freedom in the division of the spin-orbit interaction into one- and two-body parts; the 
empirical two-body spin-orbit matrix elements may be very different from the G- 
matrix elements derived from NN potentials which fit the two-body scattering data. 
Consequently we take the point of view that there is very little theoretical guidance as 
to the form of the NA spin-orbit interaction and proceed to parametrize the 
interaction. For short-range spin-orbit interactions we have Z,(v +) 6 I, (U ,) and 

-I,(“+); J=O 

(3PJIv+(S/j + s)$,) * l,v,13PJ)= -1/21,(v+); J= 1, (3.23) 

W,(~+); J=2 

For the moment we neglect tensor and quadratic spin-orbit interactions. It is a 
trivial matter to include them in the structure calculations if, e.g., effective-interaction 
matrix elements based on realistic baryon-baryon potentials become available. 

4. OPTICAL POTENTIALS; BOUND STATE ORBITS 

Not much data are available for K- and 7c- elastic scattering onp-shell nuclei and 
of course none for the proper exit 7c- channels on hypernuclei. We must in fact make 
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TABLE I 

Potentials for n- and Km Elastic Scattering at pk = 800 MeV/c 

Potential Reaction CM& (M%) x’IN 

rms radius 

(fm) 

Kl K- + 12C 24.4 41.4 1.075 0.375 0.3 1 2.36 
K2 K- + 12C 36.17 37.98 1.0 0.5 0.90 2.51 
Xl n-~ + 12c 0.9 50.9 0.926 0.44 2.5 2.32 
K3 Km + “‘Ca 27.04 32.14 1.107 0.57 0.76 3.62 
K4 Km + 40Ca 26.34 28.06 1.134 0.55 0.76 3.63 
KS Km + “‘Ca 23.57 18.69 1.182 0.49 0.71 3.62 

do with ‘*C and 40Ca targets for pR zp, = 800 MeV/c ] 121. The CMU/Houston/ 
BNL collaboration performing such experiments at the Brookhaven AGS has 
analyzed their data in an optical model framework but using a potential proportional 
to a Gaussian density [ 121. We reanalyze these data here employing the simple 
Woods-Saxon forms of Eq. (1.5) inserted in a Klein-Gordon equation. Table I 
presents a list of both K- and X- potentials obtained with fit parameters. We do not 
allow for different real and imaginary geometry but do use slightly different Km and 
nP potentials. Figures 5 and 6 give sample tits along with the data and errors of 
Ref. [ 121. Also included in Table I are the rms radii of the various potentials. These 
radii are very similar for K- and X- potentials and indeed are only slightly larger 

TT+b 
800 b&V/c 100 

k'B -KI T  -71 

0.11 ’ ’ UL ,I’ ’ ’ ’ ’ 0 IO 20 30 40 "0 IO 20 30 40 0.01 

f$,,,Cdeg) B,,(deg) 

FIG. 5. Optical model fits to the 800-MeV/c elastic scattering data for Km and A- mesons incident 
on 12C. The data are from Marlow et al. I12 1, while the curves labeled Kl. K2 and nl refer to the 
Woods-Saxon potential parameters given in Table 1. 
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K- l occl 

000 MeV/c 
-K5 

FIG. 6. Optical model tit to the K- t “Ca elastic scattering data of Marlow et al. ( 12 j at 
800 MeV. The parameters of model K5 are given in Table I. 

then the point-matter radii deduced from electron scattering. One concludes that the 
effective K-N and n-N interactions are extremely short-ranged, at least at 
800 MeV/c projectile momentum. 

Potentials K3, K4 and K5 of Table I represent a family of potentials which fit the 
K- + 40Ca data of Ref. [ 121 essentially equivalently. We note the following 
regularities: (1) as r. increases, a decreases and (2) I%‘, decreases strongly with 
increasing r. ; the dominant requirement for a tit appears to be the value of the 
volume-integrated potential in the surface region. 

A rather interesting result of our searches of the X- and K- potentials is the deter- 
mination of the real parts: A qualitative examination of the data in Fig. 5 is helpful. 
Both n- and K- scattering are diffractive, arising from the presence of a well-defined 
strong absorption. In the absence of a real potential, the first minimum with angle in 
0 n,4 and cR,4 would be deep; the real depth is then selected to fill in this minimum 
appropriately and its sign may be inferred from its effects at more forward angles. In 
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this way, we deduce a moderately attractive real K- potential and a small but 
slightly attractive x- potential. 

We have also carried out calculations using the Gaussian density and parameters 
of Marlow et al. [ 121 for the initial distorted waves. Peak cross sections for the 
“C(K-, r-) YC reaction are less than those calculated with our potential set K2 by 
4, 15 and 10% for AL = 0, 1 and 2, respectively. Cross sections for potential Kl lie 
between the above results, differing from the K2 results by about two-thirds of the 
percentages listed above. These results give some measure of the sensitivity of 
computed absolute cross sections to changes in the parameters of optical potentials 
which maintain a satisfactory fit to the elastic scattering data. To describe the 
(K-, x~) reaction we have elected to use the optical potentials 7~1 and K2 and scale 
the radius as A ii3 for targets other than “C. The error inherent in such a procedure is 
unknown but is probably not larger than other sources of variation in our cross 
section estimates, such as the choice of single-particle wave functions. 

In the zero-range approximation the single-particle wave functions of the neutron 
and A enter the radial integral of Eq. (2.12) as a simple product, often called the form 
factor. The cross section is influenced by the spatial extent and degree of overlap of 
the single-particle wave functions. In al,l cases we have fixed the size of the 
Woods-Saxon well used to generate the single-particle wave functions at r,, = 1.15 
and a = 0.63, where the radius is taken as r0 times A “3 of the bound state core. The 
depth of the well for a given single-particle orbit is then adjusted to fit the binding 
energy of the orbit, usually taken as the separation energy corresponding to a 
particular state of the core. The chosen well geometry ensures that the rms charge 
radii of the target nuclei are adequately reproduced; the assumption of the same well 
geometry for neutrons and protons should be good for such light nuclei. We have not 
included a spinorbit term in the bound-state potential since the wave function 
changes due to a spinorbit potential are small. 

The ground-state neutron separation energies for the target nuclei considered and 
the ,4 separation energies for the corresponding hypernuclei are given in Table II. The 
neutron separation energies show strong, systematic variations with mass number, 
reflecting the strong space-exchange component in the NN interaction. The A 
separation energies, on the other hand, show a smooth increase with mass number. 

TABLE II 

Ground-State Neutron and A Separation Energies 

Target 9Be “B “B 12C ‘ZC ‘jC ‘JN “N IhO 

B,(MeV)” 1.67 8.44 11.46 18.72 4.95 8.18 10.55 10.83 15.67 
B,,WeVb 6.80 8.82 10.24 10.79’ 11.69 12.17 12.17 13.59 -13” 

’ Reference [ 361. 
‘References 137, 38 ]: errors on B,, are given in the references. 
‘Reference [ 6 ]. 
d Estimate from shell-model calculations. 
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TABLE III 

Dependence of (Km, n- ) Reaction Cross Sections on Single-Particle Binding Energies” 

405 

Case 

p\r+p,, AL = 2 

Peak angle 

p,,+s,AL = 1 

Peak angle 

0.1 
1 
5 

0.1 
1 
5 

0.1 
1 
5 

0.1 
1 
s 

0.1 
1 
5 

0.1 
1 
5 

6 
11.6 

18 

6 
11.6 
18 

6 
11.6 
18 

6 
11.6 
18 

e c.m. 
(des)* 1 

4 584 
4 639 
4 614 

10 
10 
10 

58.8 
86.6 
133 

4 
4 
4 

IO 
10 
10 

16 
16 
16 

4 
4 
4 

10 
10 
10 

16 
16 
16 

42.9 25.3 17.6 12.2 
36.1 25.3 19.0 13.9 
23.9 21.0 17.8 14.4 
70.9 52.0 38.1 26.6 
69.3 54.2 41.6 30.2 
51.4 46.0 38.6 30.7 

46.1 51.2 47.1 39.7 
56.1 61.1 56.6 48.3 
59.6 65.9 62.7 55.4 

10 13 14 16 
11.5 14 15 16 

14 16 17 18 

98.4 93.3 83.4 71.8 
67.0 71.3 68.4 62.7 
49.7 56.8 57.0 54.6 

141 157 152 141 
113 132 134 129 

91.3 112 117 116 

63.8 90.1 102 108 
65.1 91.4 104 112 
62.0 87.3 100 107 

9 10 IO 11 
10 10.5 I1 12 
10 II 12 12 

B, WV) 

5 10 18 

547 484 
632 577 
675 659 

96.9 114 
133 153 
190 216 

__-- 

410 
505 
614 

122 
163 
231 

“The quantity listed is o”‘-(E, B), Eq. (4.2), for E = 446.4 MeV and is given in pb/sr. 
‘The lab. angles corresponding to 0,.,, 

e 
=4, 10, 16” are 3.8, 9.4, 15.0”, respectively. Generally. 

E.rn. = 1.064 B,,, is a very good approximation for the angular range of interest. 
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For s, hypernuclear states built on the ground state of the core the separation 
energies listed in Table II are used to construct the form factor. A p,, orbit is roughly 
10 MeV less bound than the s* orbit and therefore lies close to zero binding energy. 
If the orbit is actually unbound we use a small binding energy of, say, 0.1 MeV. For 
a hypernuclear state built on an excited state of the core the binding energy of the 
neutron is the sum of the ground-state separation energy and the excitation energy of 
the core state but the /i binding energy is, in the weak-coupling limit, unchanged from 
the ground-state separation energy. 

The effects, on the cross section for the (K, n-) reaction, of varying the bound- 
state wave functions can be seen in Table III for a 13C target and E = 446.4 MeV 
(p, = 800 MeV/c). The spatial extent of the single-particle wave function varies 
considerably with binding energy; for B, = 0.1, 1, 5, 10 and 18 MeV the rms radii of 
p,,, orbits are 5.53, 4.23, 3.12, 2.74 and 2.46 fm, respectively. The (K-, K) cross 
section is large when the overlap of the bound-state wave functions is large and for 
some intermediate value of binding energy which maximizes the form factor in the 
surface region of the nucleus. The way in which the angle at which the cross section 

I / I I I I I 
200 

PI pN-p,,,AL=Ox1/4 

0 4 8 12 16 20 24 

e,.,b (deg) 

FIG. 7. Laboratory cross sections for the (K-, n-) reaction on a ‘)C target at ph. = 800 MeV/c. The 
curves give &(I?, 0) as defined in Eqs. (4.1) and (4.2). The binding energies (in MeV) used are 
(B,,B,)= (10, 1) for p,,+p,, transitions and (10, 11.6) for P,~+s,, transitions; the radial wave 
functions for P,,~ and pllz are identical. The excitation energies of the final state are 10 and 0 MeV for 
p,,, + p,, and p,\, + s, , respectively. 
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peaks and the shape of the angular distribution vary as the form factor changes can 
also be seen from Table III. Full angular distributions for typical choices of form 
factor are displayed in Fig. 7. Angular distributions for sN -+ s,, and p,,, + (sd),, 
transitions, which populate states at higher excitation energies in the hypernucleus, 
are given in Fig. 8. 

To enable estimates for (K-, K) cross sections to specific final states to be made, 
we split the lab cross section, in the spirit of Eqs. (3.11) to (3.13), into products of 
two factors, 

da 
- = --ii- ak(E, e> P(l,, 1,), 
da, f 

where 

p,,--d*,AL= I 

OO3 24 

@l,bfdeg) 

(4.1) 

(4.2) 

FIG. 8. Same as Fig. 7 for sN + sA and P,~+ (sd), transitions; (B,v, B,,) = (35, 11.6) and (10,O.l). 
respectively, and a final state excitation energy of 25 MeV in all cases. 
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and 

In Eq. (4.2) we have combined the energy factors appearing in Eq. (2.20a) with those 
of Eq. (2.1). The quantity ak(E, 19) for a 13C target is tabulated in Tables III and IV 
and plotted in Figs. 7 and 8. The “formation strengths,” Sk(lN, s,,), are given by the 
coeffkients of Nk(E, 0) in Eq. (3.12). The formation strengths for AL = 0,2 tran- 
sitions to specific final states of the p”p, configuration result from our structure 
calculations reported in Section 5. These strengths, as well as those for AL = 1 to the 
p”s,, configuration, are presented (Figs. 10, 16, 18 to 2 1) for relevant cases of hyper- 
nuclear excitation. 

For fixed binding energies the cross sections decrease with increasing mass 
number; e.g., pN + P,, transitions for (BN, B,)= (IO, 1) are larger for ‘Be than ‘.‘C by 
23% for AL = 0 at 4” and by 4% for AL = 2 at 16”. while for ph. -+ s,, transitions the 
difference is about 9% at 10”. For more accurate results, particularly where 
cancellations are involved, the jj density matrix elements must be used with the 
appropriate binding energies to construct the form factor for each contribution to the 
reaction amplitude. 

Finally we give in Table IV a restricted set of cross sections for pK = 530 MeV/c 
which is close to the “magic” momentum for which the momentum transfer, pK -p,, 
is zero at O”; the AL = 0 transitions naturally dominate even more strongly in the 
forward direction than at pK = 800 MeV/c. 

TABLE IV 

u” (E. 8) for pn = 530 MeV/c on ’ ‘C 

8c.ln. 
(de@ 

.- 

AL=O” 

AL = 2”.h 
AL = lc.d 

4” 10” 16” 
-. 

708 375 109 

9.1 12.6 32.8 

19.8 78.8 113 

a (B,,. B,) = (lO.l), B in MeV; oAL(E. 0) in ,ub/sr. 
‘AL = 2 cross section peaks at 23” (46.3 pb/sr). 
“(B,,8,,)=(10,11.6),BinMeV. 
dAL = I cross section peaks at 17’ (I 13 ,ub/sr). 
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5. RESULTS AND DISCUSSION 

5.1. The Data 

We consider data taken with the CERN and BNL hypernuclear spectrometers 
using the (K-, K) reaction on p-shell target nuclei. In the mass range of interest to 
us, the CERN experiments to date [2-51 have used an incident kaon momentum of 
120 MeV/c to study ;Li, ;Li, :Be, y C and YO close to 0” for the emerging 7~. At 
BNL. spectra for YC, A”C and ,yN have been obtained [ 6, 7 ] at 800 MeV/c and for 
angles out to 25”. 

5.2. The General Approach 

We perform structure calculations for states in which a A particle in a p orbit is 
coupled to the nuclear core. We use a fixed set of parameters to describe the AN 
interaction for all hypernuclei from :Be to ,yO. This should be a good approximation 
because the size of the core nuclei changes little over the mass range of interest; in 
fact the measured rms charge radii are constant to within 0.1 fm from ‘Be to 15N. 
Approaches ] 151 to the structure of the p-shell nuclei which use an A-independent 
effective interaction have been very successful. For the lightest p-shell hypernuclei for 
which data exist, such as ;Li and ,:Li, we might well expect some change in the 
effective interaction. In addition it is necessary in such light nuclei to properly 
eliminate spurious center of mass states. Consequently we restrict our attention to 
A > 9. 

We present results calculated with a standard AN interaction; F”’ = -1.16 MeV, 
P2’ = -3.2 MeV, a = -0.1, E = 0 and a small spin-orbit splitting .sp = 0.5 MeV (for 
E = 0. F”’ affects only the overall binding energy). We consider the consequences of 
varying some of the parameters, but it seems that a rather weak, basically Wigner- 
type central interaction together with a small one-body spin-orbit splitting gives a 
quite satisfactory explanation of the available data. 

The lowest levels in the hypernuclei studied are populated via pN -+ s, transitions, 
more strongly at angles away from the forward direction as the momentum transfer 
increases. For the p”s,, (n = A-5) wave functions we use the results of Gal. Soper and 
Dalitz [ 17, 28 ]. In most cases these wave functions are close to the weak-coupling 
limit. In contrast, the p”p* wave functions often deviate from the pure weak-coupling 
limit, in the sense that p3,2 and pl12 configurations based on the same core state are 
strongly mixed. It is simply that the hypernuclear wave functions tend towards an 
LS-coupling structure, a consequence of the basically LS nature of the core wave 
functions and the absence of strong spin-dependent interactions (particularly the 
small spin-orbit splitting for p,, orbits). There is also a tendency towards good spatial 
symmetry, realized for the core but not fully developed for the hypernuclear levels 
because the /iN interaction is considerably weaker than its NN counterpart. We 
endeavor in the following analysis of the hypernuclear wave functions to make clear 
the role played by such symmetries. 
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5.3. Individual Nuclei 

53.1. The Hypernucleus f;‘C 

The data from the 13C(K-, z-) YC reaction at pK = 800 MeV/c have been 
presented by May et al. [7] and the main results of our calculations appeared in a 
companion letter 191. The i3C* spectrum consists of five main peaks which we refer 
to as the 0-, 5-, lo-, 16- and 25-MeV peaks. Cross sections were obtained at angles 
up to 25”; we concentrate on the data at 4 and 15O. 

The general features of the data can be simply understood via Eq. (3.15) in terms 
of the distribution of pickup strength from 13C. This is shown in Fig. 9. By coupling a 
LI in an s orbit to the ‘*C states in Fig. 9b we expect AL = 1 strength (pN + s,, 
transitions) in the “C(K-, z-)yC reaction at excitation energies of 0, 5 and 
12-16 MeV. Coupling a p* to the same set of core states should lead to a repetition 
of this pattern at excitation energies - 10 MeV higher, the pN + p,, transitions being 
AL = 0 or AL = 2 in character. We can also expect pN + (sd), and s, + s, transitions 
to contribute above E, - 20 MeV. Thus, provided the /1N interaction is not strong 
enough to give large shifts in these distributions based solely on the pickup strength, 
the origin of the five peaks in the yC* spectrum is qualitatively clear. It is evident 
that the 16- and 25.MeV peaks do not represent the excitation of single levels. The 
spectroscopic strengths of individual states in the standard calculation are plotted in 
Fig. 10. Using this structure input in the DWBA reaction calculation gives a very 
satisfactory account of the experimental angular distributions (measured out to 25’) 
for the lo-, 16- and 25-MeV peaks (see Fig. 1 of Ref. [9]). Another way of 
comparing the theory with the data is presented in Fig. 11. The calculated cross 
sections for the states shown in Fig. 10 have been folded with Gaussians of width 
equal to the experimental resolution (2.3 MeV for the bound levels of A’C and 
arbitrarily 3 MeV for higher levels) and then collected in I-MeV bins. The resulting 
histograms are compared directly with the data at 4” and 15”. At forward angles the 
dL = 0 population of l/2- states dominates; at 15” the AL = 0 cross section has 
fallen to a negligible value while AL = 1 transitions populating l/2 + and 3/2 ’ states 
and AL = 2 transitions populating 3/2- and 5/2- states are of comparable impor- 
tance. 

If the agreement between theory based on weak coupling and experiment were 
perfect within the limitations imposed by the experimental resolution and errors, little 
could be learned about the LIN interaction beyond the fact that it is not strong enough 
to produce any observable departures from pure weak coupling. Information on the 
detailed structure of the hypernuclear states comes primarily from the energies and 
cross sections of the lo- and 16-MeV peaks at 4” and 15’. The interesting features of 
the lo- and 16-MeV peaks, which signal a departure from weak coupling, are 
summarized as follows. 

(i) The cross section ratio of the two peaks at 4”, p = a( l/2,)/0( l/2;) = 5.5, 
deviates strongly from the pickup ratio whether taken from experiment 139 ]- 
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FIG. 9. (a) Spectroscopic factors for p3,2 and p,,* pickup from ‘“C calculated using Cohen and 

Kurath’s (8-16)POT interaction 115). S > 0.2 are shown. For the five strongest states there is good 
agreement with the experimental values 1391. The dominant spatial symmetries of the “C ground state 
and of the two groups of ‘*C states are indicated. 

(b) C’S plotted as a function of excitation energy in “C; C’ = 1/(2T + 1). where T is the isospin of 
the ‘*C level and S is the sum of the spectroscopic factors for p,,* and PI,> pickup. Solid lines are for 
T = 0 states, dashed lines for T= 1. C’S is directly related to the sum rule strength in the (K ~. Y ) 
reaction by Eq. (3.15). 
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0 5 IO 15 20 25 
2.01 

l.“II 
0 5 IO 15 20 25 

FIG. IO. Formation strengths, Eq. (4.3). for f;‘C states (the appropriate sum rule values are 5 for 
AL = 0,1 and 10 for AL = 2). by which o”.(E, 0) of Eq. (4.2) must be multiplied to give the differential 
cross section. Excitation energies are given relative to the lowest p’s,, or pap,, state. To compare the 
AL = 1 strength with the AL = 0 or AL = 2 strength a shift of -IO MeV representing the energy 
separation between sA and pA single-particle states in the A-nucleus potential must be applied. The 
distribution of AL = 0 strength for V,.+, % V,+* is also shown. The dots mark the location of states with 
negligible formation strength: the various spatial symmetries dominate in the regions indicated. 

p(p, d) = 1.45 and p(d, t) = 1.77 - 1.98, or from intermediate coupling calculations 
[ 151, p(CK) = 1.83. 

(ii) The 6.0 f 0.4-MeV spacing between the two peaks at 4’ clearly deviates 
from the 4.4-MeV spacing of the corresponding ‘*C core states. Ignoring the /iN 
residual interaction leads to a negative n-nucleus spin-orbit splitting 
sp = -1.6 f 0.4 MeV. 

(iii) The 16-MeV peak undergoes a downward shift of 1.7 f 0.4 MeV in going 
from 4” to 15”. After subtraction, at 15”, of the AL = 1 p,,, + s,, transitions (a 
procedure which little affects this shift), the remaining AL = 2 pN -+p,, transitions 
within this peak are dominated (90%) by 5/2- states of the ‘*C(2 ‘) @p, 
configuration. Ignoring the ,4N residual interaction again leads to a negative value for 
E,,, of about the same magnitude as that inferred in (ii). 

(iv) The lo-MeV peak undergoes only a small downward energy shift of 
0.36 i 0.3 MeV in going from 4’ to 15’, corresponding in the weak-coupling limit to 
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‘2c(o+mP1,2n+ 12c(o+)oP3,2* and thus resulting in a small positive spin-orbit 
splitting E, = 0.36 f 0.3 MeV. This feature apparently contradicts the previous two 
features when analyzed in the weak-coupling limit, which is therefore inappropriate: a 
nonvanishing I1N residual interaction is imposed by the ,!,“C data. 

(v) The 4’ data shows three peaks, the lo-, 16. and 25MeV peaks, which we 
interpret as being populated by pN -+ p*, AL = 0 transitions. This is evidence that the 
AN interaction is considerably weaker than the NN interaction since for V,,v z V,,v 
all the pN -+p,, , AL = 0 strength would appear, as the p-shell part of the strangeness 
analog state, in a single peak (see Fig. 10). 

The essential features of the f;C spectrum are obtained for an interaction with no 
dependence on the spin of the A particle. Beginning with 

J=J,+j,, j, = 1, + s A (5.1) 

we can change to a coupling scheme specified by 

J=Y+ss,, g = J, + I,. (5.2) 

For an interaction independent of s,,, LP is a good quantum number and doublet 
degeneracies corresponding to J = LP + s,, arise, independent of the strength of the 
AN interaction and the size of the nuclear core basis. An understanding of features 
(i)-(v) listed for the lo- and 16-MeV peaks is obtained from the ‘*C(O+, 2 ‘) @p,, 
spectrum, which is shown in Fig. 12 for F’*’ = -3 MeV, E = 0, a = 0 and 
” = 0 MeV. Note that the splitting of the doublets remain small for the spin depen- 
dknce of our standard interaction, i.e., a = -0.1 and ep = 0.5 MeV. To discuss the 
wave functions of the states in Fig. 12, it is first convenient to construct states of 
good Y in terms of the original weak coupling basis states; transforming from the 
basis expressed by Eq. (5.1) to that of Eq. (5.2) we have 

For the LP = 1 states (J = l/2, 3/2) in Fig. 12 there is -9% mixing of the states with 
J, = 0 and J, = 2. The wave functions for the standard interaction, given in Table V, 
show small departures from the good Y limit of Eq. (5.3). 

The two ‘*C core states have dominantly [44] spatial symmetry (79 and 88% for 
J, = 0 and J, = 2, respectively) and thus intrinsic spin S, = 0. Consequently terms in 
the AN interaction which depend on s, such as the tensor interaction and the 
spin-spin component of the central interaction have little influence on the states of 
Fig. 12. For a spin-independent Wigner residual interaction between p-shell baryons, 
all splittings and relative shifts are given in terms of the Slater integral F’*’ which 
determines the strength of a quadrupole-quadrupole effective interaction 

~e,VN) - F’*‘Q, + Q, 9 QB = C’(F,). (5.4) 
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FIG. 12. “‘C(O’, 2+) @p,, spectrum for an interaction independent of o,,. States which dominate in 
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number and the indicated degeneracies result. independent of the size of the nuclear core basis. The 
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TABLE V 

Wave Functions of Lowest p’p,, States 

J,’ 

312, 
112, 
5121 
312, 
5122 
112, 
312, 

-KY 
(WV) 

9.13 
10.20 
13.45 
13.59 
15.24 
16.39 
16.75 

Basis configuration 

o+ OPi,Z.l 0’ BP, 2, 2’ BP, 2, 2+ OP, L, 

0.963 0.183 -0.198 
0.956 -0.294 

0.352 -0.935 
-0.029 -0.658 -0.75 1 

0.927 0.346 
0.294 0.951 

0.268 -0.728 0.627 

595/148/Z-I1 
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Also, in the limit of a pure LS-coupling state with L, = J, and S, = 0, _i” becomes 
the orbital angular momentum of the hypernuclear state and So the intrinsic spin. 
Then the energy shifts of states with different L based on the 2’ state of the core are 
given by 

AE=k((LJ,,)L IIQ, * Q,,IILL)L) 

=kfi (5.5) 

where k, k’ are constants proportional to F (*) Thus the relative energy shifts for . 
L = 1, 2, 3 are in the ratios 7: -7: 2. Taking into account the repulsion of the two 
L = 1 states leads to the structure displayed in Fig. 12. 

Another useful way of exhibiting the structure of the states in Fig. 12 is in an LS 
basis with good spatial symmetry. By coupling a p,, particle to a p-shell core with 
spatial symmetry [f] = [44] we can obtain configurations with [f] = [54] and 14411 
or equivalently SU3 symmetry (@) = (14) and (03). For [f] = [54], L = 1, 2, 3, 4, 5 
are allowed while for [f] = [441], L = 1, 3. The parentages of the 1541 states with 
L= 1,3 are 

~(54]L=l)=~~L,=O@p,)-@7qL,=2@p,), 

I[54]L=3)=mlLc=2@p,)-mIL,=4@p,). 
(5.6) 

The [44 1 ] states with L = 1, 3 are the orthogonal linear combinations. Thus in the 
LS limit (L = Y’), the doublet in Fig. 12 with 9 = 2 has purely [54] symmetry, the 
lowest 9 = 1 doublet and the 4p = 3 doublet have predominantly [54] symmetry and 
the upper ip = 1 doublet has mainly [441] symmetry. The [54] symmetry is not 
allowed for nine nucleons and hence cannot be reached in the substitutional (K-, n-) 
reaction on 13C. However, the upper J = l/2 state, which has the same symmetry as 
the r3C ground state in the LS limit, can be reached and should therefore be 
populated much more strongly at 0” by AL = 0 excitation than the lower J = l/2 
state. Indeed for the standard interaction we have, in a mixed notation where ] 13C 
g.s.) stands for the substitutional r3C ground state, 

]1/2,)=0*880][54]L= lS= l/2)-O.l45(‘3C g.s.)+ . ..) 

) l/2,) = -0.1891 [54] L = IS = l/2) - 0.4371 13C g.s.) + ... . 
(5.7) 

Note that the 13C g.s. has only 20% parentage to the 0: and 2: core states (Fig. 9). 
As the strength of the MV interaction is increased the symmetry of the lowest l/2- 
state becomes more purely [54] corresponding to stronger mixing of the 0’ @ l/2 
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and 2+ @ 3/2- weak-coupling basis states (and a small admixture of higher weak- 
coupling states). Then the hypernuclear states are ordered strictly according to their 
spatial symmetry2 and the AL = 0 formation strength resides in a cluster of states 
over which the [441] symmetry is distributed (see Fig. 10). For a weak ,4N 
interaction, however, the formation strength associated with the [44] and [431 J 
symmetries of the core remains widely separated in energy and the observed 
separation of the 16- and 25.MeV peaks in the data clearly places a strong constraint 
on the magnitude of F’*’ (see Fig. 3 of Ref. [9]). 

States in lo- and 16-MeV peaks with appreciable (K-, n-) cross section at 4” 
(l/2-) and 15” (3/2-, 5/2-) are marked with asterisks in Fig. 12. The actual LS- 
coupled density matrix elements determine the population strengths Sk(Z,, IA) 
according to Eq. (4.3) and the latter, and are given in Fig. 10. The density matrix 
elements may be calculated from the wave functions listed in Table V and the pickup 
spectroscopic amplitudes. However, it is instructive to calculate them for AL = 2 in 
the LS limit with good SU3 symmetry, i.e., 

((04), x (IO), + (L,L) L l/2 J )I (~jz~,,,)(“)*~* ]I (03),L = 1s = l/2 J = l/2) 

1 2 L 

t 1 t 

(03) (01) (04) 
= const. l/2 0 l/2 ((03) 1(11)2ll(&c1)L) (00) (10) (10) - 

1/2 2 J (03) (11) (biu) 1 
(5.8) 

The SU3 9-(@) coefficient takes the values 1, l/\/r for J,u) = 14) (03 * the 
SU3 I> R3 coefficient the values -fl, -fl, J1/20(, J+iiT,’ & for 
(1~) L = (03) 1, (03) 3, (14) 1, (14) 2, (14) 3; the 9J coefficient the values I/&, 
l/\/z for J= 312, L = 1,2 and m, fl for J= 512, L = 2, 3. Equation (5.8) 
correctly predicts the general features apparent in Fig. 10 (although it is only good to 
within a factor of 2 for ratios of some pairs of states). In particular it is clear that the 
Y’= 3, 5/Y state should be dominant in the 16.MeV peak at 15”, thus accounting 
for the downward shift of the 16.MeV peak as the angle changes from 4’ to 15”. All 
measured energy separations, including the 9.3 k 0.5 MeV between the 16. and 25. 
MeV peaks at 4’, can, in fact, be accounted for with -3.4 < F’*’ < -3.0 and 
E, = 0.5 MeV (see Fig. 3 of Ref. [9]). The essential effects of F’*’ and cp can be 
readily deduced from Fig. 12 and Table V. The strict degeneracy of the lowest l/2 - 
and 3/2- levels in the absence of interactions which depend on s,, means that the 
measured separation places a strong constraint on the combination of one- and two- 
body spin-orbit forces. The energy separation goes as 0.88~~ for F”’ near its 
optimum value. For a two-body spinorbit interaction which reproduces the effect of 
E, in the diagonal elements of the energy matrices, the resultant energy separation is 
much less. This is because in an open-shell hypernucleus Z,(v,) also contributes to 
off-diagonal matrix elements; for Z,(v,,) < 0 (equivalent to F, > 0) the off-diagonal 

‘For V,,,v = V%,* - Q . Q we have E -4j~2+p2+~.u+3(~+p)]-33L(L+ 1) and, e.g.. then 
(03) L = 1 state lies between the L = 4 and L = 5 states of the (14) band. 
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matrix element in the 2 x 2 matrix for J” = l/2- is increased while in the 3 x 3 
matrix for J” = 3/2- the opposite effect occurs. If the effective interaction is to be 
determined empirically, there are no particular restrictions on the nature of the spin- 
orbit interaction. In fact the interplay of one- and two-body spin-orbit interactions in 
fitting energy level data is familiar from studies in the nuclear p shell. However, if we 
take seriously our earlier discussion of the origin of the one-body spinorbit force we 
would use a predominantly one-body spin-orbit force in our p”p), calculations. Since 
the l/2; and 3/2; levels lie below the lowest particle threshold in ,yC (“C + A with 
B, = 11.69 f 0.12 MeV) they should decay predominantly by y rays to the ,\‘C 
ground state and their energy separation might be best determined by detecting the 
lo-MeV y rays in coincidence with the outgoing pion from the (K, n-) reaction on 
13C. 

We have demonstrated (Ref. [9] and above) that the observed excitation energies 
and formation cross sections of states in ,yC can be adequately described by an 
appropriate choice of Fc2’ and E, with F”’ and a being fixed at previously determined 
values. We now consider the effect of other parameters in the effective interaction 
such as the space exchange mixture E in the central force and the two-body spin-orbit 
force. The quantity most sensitive to parameter changes is the cross section of the 
lowest l/2- state, conveniently studied as the ratio R of the formation strengths for 
the upper and lower l/2- states in Fig. 12. In the spirit of Eq. (3.12) we take for this 
quantity the ratio of squares of transition density matrix elements. The full reaction 
calculation, taking into account distortions and binding energy effects in the form 
factor, gives a value for R(8,.,, = 4”) somewhat smaller (R = 6.6)’ than that 
estimated from the density matrix elements alone (R = 9.1). If we write the wave 
function of the lowest l/2- state as 

/W;)=YlO+ OPl,*)-Pl2+ OP3i2) (5.9) 

then we have 

R = Pd(Il2) + Y@3/2) * 
[ ~w2) - m(3m I ’ 

(5.10) 

where @(l/2) and 8(3/2) are the spectroscopic amplitudes for pickup from the “C 
ground state to the O+ and 2’ states of 12C, respectively. For the small p of interest 
R is a rapidly varying function of p as shown in Fig. 13. It is clear that R is also 
sensitive to the details of the core wave functions: for the (8-16) POT interaction 
[ 151 @l/2), 8(3/2) = -0.783, -1.059, while for the MP4 interaction [ 161, which 
represents a move toward j coupling, the corresponding values are -0.849, - 1.037. 
Given a model for the core, R is governed by /I and thus largely by the off-diagonal 
matrix element in the .I= l/2 energy matrix. This matrix element is dominated by 

‘To compare theoretical and observed cross section ratios we must include calculated dL = 1 and 
dL = 2 contributions in the theoretical cross sections. At 4O this leads to a reduction in the effective 
value of R from that with dL = 0 only. 
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FIG. 13. The ratio R of Eq. (5.10) displayed as a function of the mixing amplitude p of Eq. (5.9) for 
several models of the 12C core. 

F”‘. A negative value of a decreases the matrix element but the effectiveness of the 
sN . So interaction is limited by the dominantly spin-singlet nature of the core wave 
functions. A space-exchange interaction which weakens the odd state interaction 
(E > 0) naturally leads to purer [54] symmetry for the l/2; wave function, i.e., 
increases the off-diagonal matrix element. There exists evidence [ 311 for such a 
component (E - 0.25) in the free &I interaction. The effectiveness of such a 
component depends on the range of the interaction, through the combination 
F”’ - 1/5F’*‘, and must clearly have no effect for a delta function interaction. 
Finally the two-body spinorbit interactions, characterized by the integrals I, (~1 + ) 
and I,(v-), increase the off-diagonal matrix element if they are attractive. An 
interaction derived in a meson-exchange model possesses all such components, and a 
tensor force besides. A G- matrix calculated from the meson-exchange interaction can 
be used in the shell-model calculation and an attempt to derive the AN effective 
interaction in this way is clearly a desirable step in the study of ,4 hypernuclei. 
However, in our attempts to obtain an empirical /iN interaction we are clearly 
limited in the number of parameters that we can determine by fitting the current set 
of data. We could probably, for example, have included a space-exchange interaction, 
fixing E = 0.25, say, and used F”’ and E, to fit the data. paying only the price of a 
smaller formation cross section for the lowest l/2- level. 

5.3.2. The Hypernucleus :Be 

The 9Be(K-, X-) lL?e reaction at 0” has been studied at CERN, originally at ph = 
900 MeV/c [ I] and later at ph. = 720 and 790 MeV/c [ 2-5 1. An unresolved group 
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consisting of the ;Be ground state (B, = 6.7 MeV) and states of an s,, coupled to the 
2.9.MeV 2’ state of the *Be core is observed. The 0” spectrum is dominated by two 
strong excitations at -B, = 6-7 MeV and -B,, = 17-18 MeV, respectively. The 
structure of IBe which underlies these strong AL = 0 excitations has been studied in 
detail by Dalitz and Gal [29]. 

In many respects the structure of bBe is similar to that of ,yC since the LS 
structure of the p4 core with [4] and [3 1 ] symmetries resembles that of the px core 
with [44] and [431] symmetries. The pickup strength (mostly p3,*) goes to the ‘Be 
g.s., the 2.94-MeV 2’ state and to a group of states between 16. and 20.MeV 
excitation energy, particularly the isospin mixed 2’ states at 16.63 and 16.93 MeV 
and the 3’ levels just above 19 MeV [40]. In our description of the core states and 
the 9Be g.s. we have followed Cohen and Kurath I15 ] and used the (6-16) 2 BME 
interaction. Experimental excitation energies are taken from Ajzenberg-Selove’s 
tabulation 1401 supplemented by some additional information on T = 1 states [ 41 I. 

A discussion of the ‘Be (Of, g.s.; 2 ‘, 2.94 MeV) @ p,, states is instructive, 
particularly in comparison with the analogous structure in ,yC, shown in Fig. 12. In 
‘Be the 0’ and 2 + states have very pure spatial symmetry [4 ] configurations (much 
smaller S = 1 admixtures than in ‘*C). The hypernuclear states can have 15 ] or 141 1 
symmetry with (2~) L equal to (50) 1, 3, 5 for the former and (31) 1. 2. 3, 4 for the 
latter (if we include also the 4’) 11.4.MeV core state). The weak-coupling structure 
of the :Be states differs from that of the f23C states because the “Be core is prolate, 
(1~) = (40), while the ‘*C core is oblate, (Jp) = (04). Consequently (p” IlQllp’) is 
opposite in sign to (p” I[ Qll~“) and by Eq. (5.5) the order of the ii’ = 1, 2, 3 states 
based on the 2+ core state is inverted from that displayed in Fig. 12, with the P = 1 
state lowest. The strong interaction between the two .Y = 1 states then drives the 
upper i;/’ = 1 state to a position between the P’ = 3 and i/’ = 2 states. A similar result 
has been obtained in OL + (I + n cluster model calculations 142 1. In analogy to 
Eq. (5.6) we have 

~[5]L=l)=~~L,=O@p*)-~~L,=2@p*). 

~[5]L=3)=\/27/35~L,=2@p,)-\/8/35~Lc=4@p,,) 
(5.11) 

so that the mixing of states based on the 0 + and 2 + core states will be stronger in 
;Be than in fi’C as the limit of good spatial symmetry is approached. Even for 
F’*’ = -3.2 MeV this mixing is sufficiently strong to make the O” (X -, n - ) cross 
section to the lowest 3/2- state unobservably small relative to that of the second 
3/2 - state. The remaining AL = 0 strength is concentrated in two states with T = 0, 1 
(probably strongly isospin mixed) about 12.5 MeV above the second 3/2- level. This 
is in excellent agreement with the calculations of Dalitz and Gal [29], based on pure 
LS core states, and with the data [4,5] which show two strong peaks about 12 MeV 
apart. 

Although no data exist as yet for reaction angles away from the forward direction, 
it is interesting to inquire into the distribution of P,,,, +p,, AL = 2 strength, which, 
starting with the 9Be g.s. spin of 3/2, can populate hypernuclear states with J= l/2, 



HYPERNUCLEAR SPECTROSCOPY 421 

312, 512, 712. At 15”, say, the lowest l/2- and 3/2- states should be populated 
giving rise to a peak near B, - -2.5 MeV. About 4 MeV above should be a peak, 
essentially unshifted from the peak in the 0’ spectrum and somewhat broadened, 
consisting of six unresolved levels (with 7/2;, 5/2;, l/2; and 3/2; strongest). The 
centroid of AL = 2 strength associated with the highly excited core states should be 
about 1.5 MeV higher than the AL = 0 strength, but broadening due to fragmentation 
will probably make this shift unobservable. Thus the basic differences from the ,i3C 
spectrum are the absence of the lowest AL = 0 peak and the prediction of no shift 
with angle for the peak at -B, N - 6-7 MeV. Another difference is that the AL = 1 
strength from an s,, coupled to the highly excited core states should occur around 
B ,, z -10 MeV and could possibly be resolvable from the AL = 2 strength at lower 
excitation energies (rather than coincident with it as is the case for f,‘C). A 
measurement at 15O with good energy resolution to determine. in particular, the 
separation in energy of the two lowest AL = 2 peaks would provide a useful 
constraint on the values of F’*’ and E, the space-exchange mixture. 

5.3.3. The Hypernucleus 20 

The 160(K-, n-) fi”O reaction at 0” has been studied at CERN, the cleanest 
spectrum being taken at pK = 715 MeV/c [2]. The spectrum shows four distinct 
peaks. The peaks at B, = 13 and B, = 7 MeV are interpreted [2, 351 as AL = 1 
excitations of states formed by coupling an s,, to the p;i and p$ neutron hole states 
of 150. Similarly the stronger peaks at B, = 2.5 and B,, = -3.5 MeV are interpreted 
[2, 351 as AL =0 excitations of (p~ip~,~) and (p$~~,~)N-‘/i configurations. 
Limited angular distributions [2] are consistent with this interpretation. The approx- 
imately 6-MeV separation of the two Ot states led to the important conclusion 
[2, 35 ] that the A-nucleus spin-orbit interaction is very small. This conclusion 
remains when the effects of the AN residual interaction are taken into account 1301. 

With our standard set of parameters the separation of the two 0’ states is 
6.15 MeV. The mixing of the weak-coupling basis states is very small, only 0.09 in 
amplitude @), and is naturally such as to increase the intensity of the p-shell 
symmetries 1543 ] (L = S = 1) and [444] (L = S = 0) in the lower and upper 
eigenstates, respectively. For such weak mixing the separation (AE) of the two 0 + 
states is indeed very sensitive to the p,, spin-orbit splitting and varies essentially 
linearly with cp. The ratio (R) of squares of LS density matrix elements, which 
control the production of the states according to Eq. (3.12), for the upper and lower 
states is 2.9, to be compared with two in the weak-coupling limit. This ratio increases 
for s > 0 ([f] = 15431 energetically favored) and decreases as a is made more 
negative (S = 0 favored). Indeed for c = 0.25 we have AE = 6.32, p = 0.11 and 
R = 3.3 (cf. Bouyssy’s calculation [30]). 

A comment is in order before R is compared with the experimental ratio of about 3 
for the 0’ cross sections of the two states. It is that the experimentally measured 
[43-461 ratio (T) of pickup spectroscopic factors for the 3/2- and l/2- hole states 
in 150 (or ‘jN) is always less than 2 and perhaps as low as 1.5, substantial fractions 
of the p3,2 pick-up strength missing from the 6.18 MeV level being found [43-44] in 
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I50 states at 9.61 and 10.48 MeV. Thus if p,, particles are coupled to the physical 
I50 core states 

R ‘12 - (T(1 +3’>}“’ +p - 
-T’l*p + (1 -~*)‘/* (5.12) 

which depends quite strongly on T. Finally there are the dynamical effects on R to be 
considered. These can be estimated from our full reaction calculation. In addition to 
the four peaks in the “jO(K-, K) YO (0”) spectrum discussed above there is a broad 
structure centered near B, = -15 MeV [ 21. It can be attributed mainly to the 
sh, -+ s,, AL = 0 transition with some pN + (sd), AL = 1 excitation, both of which are 
expected in this energy region. 

The (p;‘p,) 2’ states in our standard calculation remain relatively pure weak- 
coupling states. The state based on the pli2 hole is shifted down from the 
corresponding 0 + state by 0.3 MeV. The centroid of the two states, 1 MeV apart, 
based on the p3,* hole, lies even closer to the corresponding O+ state. The ratio for 
the production of the upper pair relative to the lowest state is 1.8, before any account 
is taken of the fractionation of the pickup strength to the core. In addition, AL = 1 
strength, from an s,, coupled to the 9.61. and 10.48.MeV states of the core, will 
contribute to the peak at B, z 2.5 MeV. 

5.3.4. The Hypernucleus YC 

The ‘*C(K-, n-) fi’C reaction has been studied [ 2 ] at CERN for 0, = 0” and 
pK = 715 MeV/ c and at BNL [6] for 8, < 19” and pK = 800 MeV/c. The 0” spectrum 
exhibits two peaks at B, = 11 and 0 MeV which have ascribed [2,6, 201 to 1~ and 
Of states, respectively, in which a A particle in an s,,* or a p3,* orbit couples to the 
3/2- “C ground state, the dominant parent of the ‘*C ground state. For 8, > 0’ the 
two peaks remain 161, the upper peak showing no observable shift in excitation 
energy. The angular distributions [6] are consistent with the excitation of both 
(“C(g.s.) a~~,~,,) Of and (‘lC(g.s.) @pl,2/1 ,P~,~,,) 2 + configurations in the B, = 
0 MeV peak [6. 201. the AL = 2 excitation being totally dominant [ 201 for 8, = 15’. 

In the full p’p,, shell-model calculation the tendency to form states with good 
spatial symmetry means that the wavefunctions of the low-lying 0’ and 2’ states 
differ considerably from the simple weak-coupling description given above. The end 
result that the AL = 0 and AL = 2 strength should be localized at the same excitation 
energy is, however, the same in both descriptions. Nevertheless it is instructive to 
examine the shell-model calculation for the O+ states in some detail. 

The only core states that we need consider are the 3/2- ground state, the 2.00- 
MeV l/2- state and the 4.80.MeV 3/2- state. These three states account for essen- 
tially all the p-shell pickup strength from ‘*C, with individual spectroscopic 
amplitudes [ 151 of 2.387. 1.227 and 0.869, respectively. The wave functions of these 
levels have dominantly 1431 spatial symmetry (hence S = l/2). Their orbital angular 
momentum content for [43] symmetry is 
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I3/2;) = 0.783 IL = 1) - 0.465 IL = 2) + . . . . 

11/2P)==0.9741L= l)+..., (5.13) 

13/2,) = 0.451 IL. = 1) + 0.8221L = 2) + ,... 

If we now couple ap, to the [43] symmetry we obtain the hypernuclear symmetries 
[ 531, [44] and [43 1 ] with lowest L values of 1, 0 and 1, respectively (and S = L for 
J = 0). We find the amplitudes of these symmetries in the weak-coupling basis states 
by first converting the weak-coupling basis states to LS coupling and then using the 
appropriate SU3 I> R3 Clebsch-Gordan coefficients to obtain the amplitudes of states 
with definite spatial symmetry. The result of these transformations is given in Table 
VI. Also given are the Of wave functions of the standard calculation and their 
decomposition in terms of the states with good spatial symmetry. While the weak- 
coupling configurations are quite strongly mixed in the 0’ eigenstates it is clear that 
one spatial symmetry dominates in each O+ wave function. For the standard AN 
interaction the [44] L = 0 configuration which is strongly populated in the (K-, zP) 
reaction comes lowest. However, for V,,, zz V,, the 1531 L = 1 configuration will 
come lowest as shown in Fig. 14. Then the 0: and 0: states, which are the analogs 

TABLE VI 

Wave Function Relationships for ,\‘C(O _ ) 

A [53jL=S= 1 [44]L=S=O 1431jL=S= I 

312; OP,,~ -0.045 0.639 0.647 
312; 0 P,,? -0.730 0.368 -0.460 
w @PI,? 0.607 0.562 -0.513 

0: 0.886 0.078 0.458 
0; -0.320 -0.611 0.724 
0: 0.336 -0.788 -0.5 16 

c [531L=S= 1 144]L=S=O 1431/L=S= 1 

0: 0.181 0.852 0.302 
0: 0.900 -0.022 -0.297 
0: 0.247 -0.39 1 0.868 

A Symmetry content of weak-coupling basis states. Note that only the most important states with 
definite spatial symmetry are listed. 

BExpansion of O+ eigenstates in the weak-coupling basis. The energies of the three 0’ states are 0. 
2.26 and 5.51 MeV. 

‘Symmetry content of O+ eigenstates 
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FIG. 14. The three lowest p’ph 0’ states of ,FC for the standard AN interaction (I) and for 
V ,,H = V,,,, (II). The intensities of the dominant spatial symmetries in the wave functions are also given. 

of the Of, and 0: states in the nuclear calculation, are separated by 12 MeV or so. 
The full low-energy spectrum of p7pA O+ and 2’ states is given in Fig. 15 together 
with the squares of the density matrix elements governing the production of the states. 
The bulk of the 2+ strength is fragmented over the lowest three levels the centroid of 
this strength coinciding with that of the corresponding 0’ strength to within 150 keV. 
This feature of p7pA strength is preserved for a wide range of parameter variations in 
the interaction, including strong one-body spin-orbit forces. Consequently little can 
be deduced about this interaction from the ‘*C(K-, n-) :‘C data. 

In contrast it is probable that the ‘*C(K-, n-) YC reaction can be used to put 
useful constraints on the nature of the N/i interaction for pNs,,. The issue is the 
formation strength of the second and third 1 - levels in A’C which in the weak- 
coupling limit would be formed by coupling an s, to the l/2-, 2.00.MeV and 3/2-, 

7 p* o+ 2+ 

1 

PZ 
__ 0.02 0.01 __ 

6 ~ 0.05 

5 

i 

- 0.01 

E(MeV) 

0.63 - 

FIG. 15. The spectrum of the lowest p’p,, 0’ and 2+ states of ,yC for the standard AN interaction. 
For each level the square of the LS density matrix element appearing in Eq. (3.12) is given. Note the 
near equality of the centroid energies for the iowest groups of O+ and 2’ levels. 
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4.80-MeV excited states of “C. In the weak-coupling limit the summed strength to 
these two states would be 40% of the ground-state strength, if Cohen and Kurath’s 
spectroscopic factors [ 151 are used. Many experimental measurements of the pickup 
strength have been made [45,47] and overall there is good agreement with the 
theoretical values [15]. From a study of the ‘*C(K-. z-) \*C reaction, Chrien et al. 
[ 6 1 have found only 6 f 5% of the ground-state strength in the 2- to 7-MeV region of 
excitation energy in i*C. The most natural explanation of this lack of strength lies in 
destructive admixtures of the weak-coupling basis states in the second and third 1~ 
levels. 

The canonical pNs,, interaction (A +S+Q&; 79), favored by Dalitz and Gal ( 17 1, 
actually gives an increase of strength for the second and third 1 - levels while a < 0, 
Eq. (3.16), by itself gives a decrease. It is clear that the ‘*C(K-, x-) YC data can 
put useful constraints on the pNsA effective interaction, which cannot be regarded as 
well determined solely from a fit to ground state binding energies [28]. The strongest 
constraints on the interaction are expected from hypernuclear y-ray data on energies 
of excited states and core @ sA doublet splittings. 

5.3.5. The Hypernucleus fpN 

The 14N(K-, z-) i4N reaction has been studied [7] at BNL for 8, = 0” and 
pK = 800 MeV/c. Th e most prominent features in the spectrum are peaks at E, = 10.5 
and 20 MeV, which can be associated with two groupings of strength for neutron 
pickup from r4N. 

Five states which can clearly be identified [48] with p-shell configurations have 
been observed in neutron pickup from 14N. There is good agreement between 
experiment [45,49] and theory [ 151 for the spectroscopic factors. The five states are 
the l/2- ground state; the 3/2- 3.51.MeV level, the 5/2-, 7.38-MeV level; the 
l/2 - 8.92-MeV 1 eve1 and the 3/2- 11.88-MeV level with theoretical [ 151 C’S values 
of 0.69, 0.16, 1.86, 0.67 and 1.16, respectively. The ground state is populated by pli2 
pickup, the rest mainly by p3,* pickup. The 14411 symmetry content of the five core 
wave functions is 70.6, 87.7, 83.4, 2.4 and 1.9%, the rest being [432] symmetry (very 
little [333]). The [441] and [432] symmetries are reached by pickup from the 
dominant (91%) [442] component of the 14N ground state in the ratio of 1:2, S = 3/2 
states with [432] symmetry being favored over those with S = l/2 in the ratio 4:l. 
Indeed the l/2; and 3/2;p9 wave functions contain 89.8 and 71.0% of quartet 
configurations, respectively. 

In a simple weak-coupling picture we expect a p9pA 1 ’ state based on the 13N 
ground state to be a major contributor to the 0” cross section of the 10.5-MeV peak 
and 1’ states based on the 7.38-, 8.92- and 11.88-MeV levels of i3N to be respon- 
sible for the strong excitation of the 20-MeV peak. From Fig. 16 it can be seen that 
the essential features of the weak-coupling description remain in the shell-model 
calculation with our standard AN interaction. Indeed, the two strongest 1 + states 
contain 87% (5/2; @p3,**) and 81% (3/2; @P~,~,,), respectively. Figure 17a shows 
that the AL = 0 strength in the E x z lo-MeV region is augmented by pN -+ So AL = 1 
strength; the AL = 1 strength at lower excitation energies does not show up clearly in 
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FIG. 16. Formation strengths for :jN states. See caption to Fig. 10. 

the forward angle data (Fig. 17b). There is a tendency for the lowest p”p,, 
configurations to develop [541] symmetry and 38% of the AL = 0 strength associated 
with the two lowest core states is shifted into the 20-MeV peak. The relationship 
between the weak-coupling wave functions and wave functions with good spatial 
symmetry is easily found. For example, since the “N ground state is 90% 14421 
L = 2 S = 1 we require, in analogy to Eqs. (5.6) and (5.1 l), 

~[441]@(1]-,[442]L=2)=-\/21/25]LC,=3@p,,)-J4/25]L,.=1@p,), 

i[432]@[1]+[442]L=2)=f11Lc=2@p,,)-J1/4lL,=l@p,,). (5.14) 

Thus the first configuration coupled to S = 1 to form J = 1 has an overlap of 84% 
with I [441] L, = 3S, = l/2; J, = 5/2 @P~,~,, ) which in turn has a large overlap 
(83%) with the / 5/2; @pjlz,,) weak-coupling state. The distribution of AL = 2 
strength (Fig. 16 and Fig. 17b) is quite similar to the AL = 0 strength. By far the 
strongest state is a 3 + state based almost entirely (99%) on the 5/2 core state 

]3+)=0.930/5/2- @p,,z,,)+0.350~5/2- @p3,2,,)+ . . . . (5.15) 

Finally we note that the experimental and theoretical forward angle cross sections 
shown in Fig. 17 are in good agreement. The experimental cross sections [ 501 for the 
10.5- and 20-MeV peaks, after the subtraction of K decay and quasi-free 
backgrounds, are 458 f 56 and 1785 f 104 pb/sr. respectively. The theoretical cross 
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428 AUERBACH ET AL. 

sections taken over the same regions of excitation energy are 434 and 2028 pb/sr. 
Some of the subtracted quasi-free background at the highest excitation energies can 
be accounted for by sN-+ s,, and pN+ (sd), transitions for which the strength is 
estimated in Fig. 17b. The only obvious discrepancy between theory and experiment 
in Fig. 17 appears to be a difference of about an MeV in the separation of the two 
clearly observable peaks. 

5.3.6. The Hypernucleus fi”C 

The neutron pickup strength from 14C is concentrated [ 151 in three levels of 13C, 
the l/2- ground state, the 3.68-MeV 3/2- level and the 15.1 l-MeV 3/2-, T= 312 
level with C’S values of 1.73, 2.04 and 1.19, respectively. In many respects the 
spectra for the r4C(K-, z-) f,“C reaction are expected to be similar to spectra taken 
with a 13C target. It can be seen from Fig. 18 that the ratio of dL = 0 strength for the 
two lowest O+ states is changed from 1.2 in the weak-coupling limit to 4.0 in the 
standard calculation; the lower state tends toward 15411 symmetry with L = S = 1 
and the upper state to [442] symmetry with L = S = 0. As in A”C, a shift in the 
AL = 2 strength relative to the AL = 0 strength based on the 3/2; core state is 
expected, although it is possible that this shift could be obscured by AL = 1 strength 
based on the lowest T = 3/2 core state. 

3.07 

lLlLL 
0 5 IO 15 

FIG. 18. Formation strengths for ,yC states. See caption to Fig. 10 
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5.3.1. The Hypernucleus i5N 

Substantial strength for neutron pickup from 15N is observed [S 1 ] for seven levels 
of 14N: the 1 + ; T= 0 ground state, the O+; T= 1, 2.31-MeV level, the 1’; T= 0, 
3.95-MeV level, the 2 + ; T = 0 7.03-MeV level, the 2’ ; T = 1 9.17.MeV level; the 2 ’ ; 
T = 1 10.43.MeV level and the 1’ ; T = 1 13.7 1 -MeV level. There is good agreement 
between theory [ 1.51 and experiment if the well known mixing 151,521 between the 
lowest p” 2 + ; T = 1 configuration and a p’(~d)~ configuration is taken into account 
(9.17- and 10.43-MeV levels). The wide spread in pickup strength leads to the broad 
distribution of hypernuclear formation strength shown in Fig. 19 for AL = 0, 1, 2. 
With the current energy resolution of about 2.5 MeV it is doubtful whether peaks 
corresponding to states displayed in Fig. 19 could be resolved. Thus, at the present 
time, 1’ N does not appear to be an attractive case for experimental study. 

5.3.8. The Hypernucleus YB 
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Neutron pickup strength is observed to five states in 9B: the 3/2- ground state, the 
5/2- 2.36-MeV level, the 7/2- 6.97-MeV level, the (7/2-) 11.7.MeV level and the 
(5/2-) 14.7-MeV level with theoretical C’S values of 0.59,0.58, 0.56, 0.78 and 0.24. 
Here we have used Cohen and Kurath’s (6-16) 2BME interaction [ 151 which appears 
to give a better description of the A = 9 data than the POT interaction. Even so the 
7/2- and 5/2- levels which we identify with the 11.7- and 14.7-MeV levels are 

AL=I 

FIG. 19. Formation strengths for ,\‘N states: see caption to Fig. 10. Asterisks indicate 2 ’ ; T= I 
parentage. which in reality will be fragmented over several core states. 
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predicted -1.5 MeV too low in energy. It is not clear, then, how realistic the other 
theoretical energies that we use for the hypernuclear shell-model calculations are. The 
distribution of formation strength for YB is given in Fig. 20. The distribution of 
AL = 0 strength differs markedly from that of the pickup strength, of which the 
distribution of AL = 1 strength is representative. It is easy to show that the wave 
function of the 3: state 

0.36813/2, @~~,~,,)+0.63215/2; OP,,~,,)-0.664/5/2; Opjlz,\)+... (5.16) 

has a large overlap with the I[41 ] 0 [ lj+ [ 421 K = 2 L = 2 S = 1) configuration 
based on the dominant [ 4 11 symmetry of the 3/2 ; and 5/2 ; core states. The AL = 0 
strength at higher excitation energy is due mainly to the / [32 1 @ [ 1 ] + 1421 K = 2 
L = 2 S = 1) configuration. Both 1421 configurations have a strong overlap with the 
l”B ground-state wave function 

I”Bg.s.)=0.871 I[421 K=2 L=2 S= 1) -0.401 I[421 K=2 L=3 S= I)+ . . . . 

(5.17) 

We have again a clear demonstration of the role played by symmetries in the 
structure of light hypernuclei. 

0.25 

FIG. 20. Formation strengths for ,yB states. See caption to Fig. 10. 
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5.3.9. The Hypernucleus ,f,‘B 

In the case of A’B the “B core nucleus possesses a relatively high density of states 
at low excitation energy, all of which are populated [53, 541 in neutron pickup 
reactions. A consequence of this is a high density of hypernuclear levels (Fig. 2 1). 
most with some formation strength, which clearly cannot be resolved experimentally. 
Also there is strong mixing of the weak-coupling basis states, e.g., the wave function 
of the 3/2; level, with strong AL = 0 formation strength is 

131% > = 0.598 13: 0 ~x,*n >-0.62511: 0~,,?,\)+0.33411: Opj,x) 

tO.11211: @~,,~~)-O.I92~1~ @pz~2,\)+0.226/2,+ OP,,~,,) 

-0.18712: OPT). (5.18) 

One possibility, of some interest, is that with the AL = 1 strength concentrated at low 
excitation energy a rather pure AL = 2 excitation at E, - 12 MeV is possible for 
e, - 150. 

5.4. s, + s, and ph. -+ (sd), Transitions 

In the preceding sections we have discussed in detail the results of our p”p,, shell- 
model calculations and used the wave functions to estimate pN --t p,, cross sections for 
the (K-, C) reaction. For pN + So transitions we have used the results of Gal, Soper 

1.0 

AL=I 

0.5 I 

AL=Z 

FIG. 21. Formation strengths for ,\‘B states. See caption to Fig. 10. 
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and Dalitz [28]. Starting at about 20-MeV excitation energy in the residual hyper- 
nucleus we expect s,,,+ s, and JJ,,,+ (sd),, transitions to contribute to the (K-, n-) 
cross section. Angular distributions for these transitions are shown in Fig. 8. 
Estimates of the cross sections for such transitions appear in Figs. 11 and 17 for k”C 
and YN, respectively. We discuss briefly how these estimates were made. 

First we note that the single-particle wave functions which enter into the distorted- 
wave reduced amplitudes p”, of Eq. (2.6) are functions of the relative coordinate 
between the particle and the core. The conventional shell-model spectroscopic factor 
corresponds to splitting off a single-particle wave function which is a function of the 
particle coordinate with respect to the origin of the potential well. To obtain the 
appropriate function in terms of the relative coordinate the shell-model spectroscopic 
amplitude must be multiplied, in an oscillator model, by (A/A - l)Q’2, where 
Q = 2n + I gives the node structure of the single-particle wave function. Then for a p- 
shell target nucleus the sum ruie for pickup of a p nucleon is (A/A - l)(A - 4). The 
sum rule for s- nucleons is correspondingly less than four after spurious center of 
mass components are eliminated from the s-hole states, and is, in fact, equal to 
3(4/A - 1). The distribution of s-hole strength, as located in (p, 2p) reactions [ 55 ], is 
very broad. Our estimates for the strength associated with sN+ s, transitions are 
based on concentrating the sum-rule strength in a single peak with a location and a 
width based on the (p, 2p) spectra of Tyren et al. 1551. For a 14N target, e.g., the 
neutron pickup sum rule is 2 l/l3 and we have concentrated the calculated 4’ 
(K-, n-) cross section of 767pb/sr (Eq. (3.15) and Fig. 8) at an excitation energy of 
33 MeV with a width of 10 MeV. If (p, 2p) results are not available the distribution 
of s-hole strength from shell-model calculations 1561 can be used. A study of neutron- 
hole states in the s- shell has been made 141 using the (K -, X-) reaction on 6Li, ‘Li, 
9Be and “C targets. The s,,, + s* transitions show up very clearly for the Li targets. 

In the case of pN -+ (sd), transitions we ignore center of mass corrections and use 
Eq. (3.15) directly, assuming pure weak coupling and a IO-MeV spacing between the 
p,, and (~d)~ orbits. 

Despite the fact that the above estimates for s,+ s,, and pN+ (sd), transition 
strength are somewhat crude, particularly for the pN -+ (sd), strength, it appears that 
much of the observed hypernucleus production at high excitation energies can be 
accounted for; see, e.g., Figs. 11 and 17. 

6. CONCLUSIONS 

In this paper we have developed a comprehensive approach to hypernuclear 
spectroscopy in the p shell. The (K-, n-) reaction mechanism is treated in DWBA, 
and incorporates realistic K - and rc- distorted waves obtained from an optical model 
fit to the available elastic scattering data, Fermi-averaged K-n -+ n-n amplitudes, 
and (n, ,4 } bound-state wave functions constrained by empirical binding energies and, 
in some cases, rms radii. A weak-coupling basis is used to describe the hypernuclear 
structure aspects. Since the intensities of hypernuclear states (summed over the spin) 
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seen in the (K-, 7~~) reaction are proportional to the neutron pickup strengths on the 
same target (in the weak-coupling limit), enough nuclear core states are included to 
account for essentially all of the pickup strength. In some cases the mixing of 
configurations based on different core states has a significant effect on hypernuclear 
formation strengths. 

The existing (K-, n-) data on :Be, y C, A3C, YN and YO are analyzed in detail, 
and used to extract constraints on V,,, and obtain spin assignments for hypernuclear 
levels. In agreement with earlier work, we find that weak spin-spin, space-exchange 
and spin-orbit interactions for /1N are consistent with the data. The measured energy 
shifts of peaks in the (K-, X-) spectra as the pion angle is varied are used to obtain 
constraints on the spin-orbit splitting (cp z 0.5 MeV) and the quadrupole part of the 
/fN interaction (3.0 < -F, < 3.4 MeV). Even though the AN interaction is fairly 
weak (compared to NN, say), hypernuclei display a tendency to seek a high degree of 
spatial symmetry (forbidden for systems with only nucleons) in certain low-lying 
states. This configuration-mixing effect can lead to approximate dynamical selection 
rules ([441] k [ 541 for AL = 0 transitions in i”C, for instance) and considerable 
deviations in intensity ratios from the weak-coupling limit in some cases. In addition 
to explaining observed intensity ratios of lines seen in the (K-, K) reaction on a 
variety of targets, our approach provides a qualitative account of absolute cross 
sections (at the 20% level) and the shapes of (K, n-) angular distributions. 

We have also given predictions for several p-shell hypernuclei for which no data 
exist, namely, YB, A'B, YC and YN. Except for A4C, the spectra are rather 
complicated, involving a variety of states which are not too well separated in energy. 
Using coarse resolution (K-, K) experiments, it will be difficult to make much 
further progress in extracting the detailed spin dependence of the /1N interaction. 
Energy resolution of the order of 100-200 keV in (K-, x-) is required before one can 
expect further qualitative advances in hypernuclear spectroscopy in the p shell. This 
certainly demands the intense K- beams of a “kaon factory.” Even in this case, the 
unnatural parity part of the /f hypernuclear spectrum would remain essentially unex- 
plored. For this part of the spectrum, the (K -, 71-y) [ 17,571 and (y, K ‘) reactions 
[58] offer particular promise. The existence of more detailed hypernuclear data, 
particularly regarding spin splittings of levels, would warrant a serious attempt to 
relate the sort of phenomenological LIN potentials used here to more microscopic 
descriptions such as meson or quark-gluon exchange models;’ even now, there is a 
challenge for microscopic theories to explain the overall strength and general charac- 
teristics of the empirical N/1 effective interaction. The (K-, n-y) data taken so far 
[57] imply small doublet splittings for p”s,, conligurations and hence a small I,,,, . s,, 
interaction consistent with the analysis of p,$, +pA transitions in the (K ~, n- ) 
reaction. 

‘The shell-model calculations described in this paper may be extended in various 
ways. For example, all lhw hypernuclear configurations can be treated on the same 
footing if the data warrants; such a treatment is necessary in any case for the lightest 
p-shell hypernuclei to deal with center of mass problems and to treat properly the 
excitation of levels via sN + s,, transitions [59]. Also, we have made calculations for 
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C hypernuclei using a p*pr shell-model basis under the assumption that isospin is a 
good quantum number. More parameters are needed to specify the NC effective 
interaction since two isospins are possible for the two-body system; baryon-baryon 
potentials (331 suggest a strong spin and isospin dependence for the NZ interaction 
and a larger one-body spin-orbit Z-nucleus interaction [ 321 than in the case of the /i. 
Additional complications are that isospin is likely not to be a good quantum number 
for some Z-hypernuclear levels and that continuum effects may be important. As 
more data becomes available on A, Z, E and possibly even 0 - hypernuclei in the 
future, a more detailed study of spectroscopic questions along the general lines 
developed here will be warranted. 

REFERENCES 

I. G. C. BONAZZOLA et al.. Phys. Rev. Lett. 34 (1975). 683; W. BRUCKNER et al., Phys. Lett. B55 
(1975). 107: 62 (1976). 481. 

2. W. BRUCKNER et al., Phys. Lett. B 79 (1978). 157: R. BERTINI et al., Phys. Lett. B 90 (1980). 375. 
3. R. BERTINI et al., Nucl. Phys. A 360 (1981), 315. 
4. R. BERTINI et al., Nucl. Phys. A 368 (1981). 365. 
5. B. POHV. in “Annual Review of Nuclear and Particle Science” (J. D. Jackson, H. E. Gove, and 

R. F. Schwitters. Eds.), Vol. 28, p. 1. Annual Reviews, Inc., Palo Alto. 1978: B. POHV. Nucl. Phys. 
A 335 (1980). 233. These articles review the CERN work on (Km. n-) reactions. 

6. R. CHRIEN et al., Phq’s. Lett. B 89 (1979). 31. 
7. M. MAY et al., PhJx Rev. Lett. 47 (1981). 1106. 
8. D. H. DAVIS AND J. SACTON, in “High Energy Physics” (E. H. S. Burhop. Ed.). Vol. II. pp. 

365-455. Academic Press, New York, 1967; J. PNIEWSKI AND D. ZIEMINSKA, “Proceedings. 
Seminar on Kaon-Nuclear Interaction and Hypernuclei, Zvenigorod. USSR. September 1977.” pp. 
33-50. 

9. E. H. AUERBACH et al.. Phys. Reti. Left. 47 (1981). 1110. 
10. J. H~~FNER. S. Y. LEE, AND H. A. WEIDENM~~LLER, Phys. Lett. B 49 (1974), 409; Nucl. Phys. A 234 

(1974). 429: H. C. CHIANG AND J. HOFNER. Phys. Lett. B 84 (1979). 393. 
11. A. BOLIYSSY, Nucl. Phys. A 290 (1977), 324. 
12. D. MARLOW et al.. Phys. Reu. C 25 (1982), 2619: D. MARLOW. Thesis, Carnegie Mellon University. 

1981. 
13. P. D. KUNZ, unpublished. The coupled channels code CHUCK was utilized with no back coupling, 

a mode in which its results are exactly equivalent to DWBA. 
14. G. P. GOPAL et ~1.. Nucl. Phys. B 119 (1977). 362. 
15. S. COHEN AND D. KURATH, Nucl. Phys. 73 (1965), I; Nucl. Phys. A 101 (1967). I. 
16. D. J. MILLENER, unpublished. 
17. R. H. DALITZ AND A. GAL, Ann. Phys. (N.Y.) 116 (1978). 167. 
18. M. L. GOLDBERGER AND K. M. WATSON, “Collision Theory,” p. 94, Wiley. New York, 1964. 
19. D. M. BRINK AND G. R. SATCHLER, “Angular Momentum,” Oxford Univ. Press (Clarendon). 

Oxford, 1968. 
20. C. B. DOVER, A. GAL, G. E. WALKER, AND R. H. DALITZ, Phys. Lett. B 98 (1979), 26. 
21. L. LUDEKING, Ph.D. thesis, unpublished, 1979; C. B. DOVER, L. LUDEKING. AND G. E. WALKER. 

Phys. Rer. C 22 (1980). 2073. 
22. N. AUSTERN, “Direct Nuclear Reaction Theories,” Wiley, New York. 1970. 
23. E. H. AUERBACH, Camp. Phys. Comm. 15 (1978). 165. 
24. We use the amplitudes in Table 4e from Ref. [ 141. 
25. B. R. MARTIN AND M. K. PIDCOCK, Nuci. Phys. B 127 (1977), 266. 285. 



HYPERNUCLEAR SPECTROSCOPY 

26. E. S. MILLER, Princeton Report PPAD 630F. 1967, unpublished. 

27. B. W. ALLARDYCE et al., Nucl. Ph.vs. A 209 (1973), 1. 

28. A. GAL, J. M. SOPER, AND R. H. DALITZ. Ann. Phvs. (N.Y.) 63 
(1978), 79. 

435 

(1971). 53; 72 (1972). 445: 113 

29. R. H. DALITZ AND A. GAI., Phys. Rev. Letf. 36 (1976). 362: Ann. Phys. (N.Y.) 131 (1981), 314. 

30. A. BOUYSSY. “Proceedings, International Conference on Nuclear Physics. Berkeley 1980,” LBL- 

111 18, p. 146. 

31. R. H. DALITZ. R. C. HERNDON, AND Y. C. TANG, Nucl. Phys. B 47 (1972). 109. 
32. C. B. DOVER AND A. GAL, Brookhaven Report BNL 30124, in “Progress in Particle and Nuclear 

Physics” (D. H. Wilkinson, Ed.), in press. 

33. M. M. NAGELS, T. A. RIJKEN, AND J. J. DESWART. Phys. Rw. D 12 (1975). 744; D 15 (1977). 

2547: D 20 (1979), 1633. 

34. J. V. NOBLE, Phys. Left. B 89 (1980), 325; A. BOUYSSY. Phw. Lert. B 99 (1981), 305; R. 

BROCKMANN AND W. WEISE, Nucl. Phvs. A 355 (1981). 365. 

35. A. BOUYSSY, Phvs. Left. B91 (1980). 15. 

36. A. H. WAPSTRA AND K. Bos, Atomic Nucl. Data Tables 19 (1977). 177. 

37. M. JURIC et al.. Nucl. Phys. B 52 (1973). 1. 

38. T. CANTWELL et a/., Nucl. Phys. A 236 (1974), 445. 
39. H. TAKETANI, .I. MUTO, H. YAMAGUCHI, AND J. KOKAME, Phys. Lert. B 27 (1968). 625; J. D. 

COSSAIRT AND D. P. MAY. Nucl. Phys. A 319 (1979). 182. 

40. F. AJZENBERG-SELOVE. Nucl. Phys. A 320 (1979). 1. 

41. H. D. KNOX AND R. 0. LANE, Nucl. Phys. A 359 (1981). 131. 

42. H. BANDO. M. SEKI, AND Y. SHONO, Prog. Theor. Phys. 66 (198 1), 2118. 

43. J. SNELGROVE AND E. KASHY, Phys. Rev. 187 (1969). 1246. 

44. G. MAIRLE AND G. J. WAGNER, Z. Phvs. 258 (1973), 321: V. BECHTOLD. L. FRIEDRICH, P. DOLL. 

K. T. KN~~PFLE, G. MAIRLE, AND G. J. WAGNER. Phys. Lett. B 72 (1977). 169. 

45. P. G. Roos. S. M. SMITH, V. K. C. CHENG, G. TIBELL, A. A. COWLEY. AND R. A. J. RIDDLE. Nzrci. 

Phys. A 255 (1975), 187. 

46. M. A. FIRESTONE, J. JANECKE. A. DUDEK-ELLIS, P. J. ELLIS. AND T. ENGELAND. Nucl. PhFs. A 258 
(1976), 317; J. D. COSSAIRT. S. B. TALLEY. D. P. MAY. R. E. TRIBBLE. AND R. L. SPROSS. PhJs. 
Rev. C 18 (1978), 23. 

47. F. AJZENBERG-SELOVE AND C. L. BUSCH, Nucl. Phys. A 336 (1980). 1. 

48. D. G. FLEMING. J. CERNY, C. C. MAPLES. AND N. K. GLENDENNING, phys. 17~~~. 166 (1968). 1012 

and references contained therein. 

49. F. HINTERBERCER, G. MAIRLE, V. SCHMIDT-R• HR, P. TUREK. AND G. J. WAGNER. Nucl. Phj,s. 
A 106 (1968). 161. 

50. S. BART er al., private communication. 

51. J. SNELGROVE AND E. KASHY. Phys. Rer. 187 (1969). 1259; W. BOHNE. H. HOMEYER. H. LETTAU. 

H. MORGENSTERN, J. SCHEER. AND F. SICHELSCHMIDT. Nucl. Phvs. A 154 (1970), 105. 
52. S. LIE. Nzrcl. Phw. A 181 (1972). 517; G. KASCHL er al.. Nucl. Phys. A 178 (1971). 275: D. G. 

FLEMING et al., Nucl. Phw. A 162 (1971). 225. 

53. L. A. KULL AND E. KASHY. Phys. Rec. 167 (1968). 963: 1. S. TOWNER. Nucl. PhJ,s. A 126 (1969). 

97. 

54. D. DEHNHARD, N. WILLIAMS. AND J. L. YNTEMA, Phys. Rec. 180 (1967). 967; Php. Rev. C I 
(1970). 336. 

55. H. TYREN e/ al.. Nuci. Php. 79 (1966). 321. 

56. M. KIRCHBACH AND H.-U. J;~GER. Sot. J. Nucl. phj,s. 29 (1979). 614. 

57. M. MAY et al.. to be published. 

58. A. M. BERNSTEIN. T. W. DONNELLY, AND G. EPSTEIN. Nucl. Phys. A 358 (1981). 195~. 

59. L. MAILING el al.. Phw. Left. B 92 (1980). 256: L. MAJLING el al.. preprint. 


